This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352833 #15 Jul 09 2025 04:58:42 %S A352833 1,0,0,1,1,1,2,1,3,2,4,3,6,5,8,7,12,10,16,14,23,19,30,26,42,35,54,47, %T A352833 73,62,94,82,124,107,158,139,206,179,260,230,334,293,420,372,532,470, %U A352833 664,591,835,740,1034,924,1288,1148,1588,1422,1962,1756,2404,2161 %N A352833 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k fixed points, k = 0, 1. %C A352833 A fixed point of a sequence y is an index y(i) = i. A fixed point of a partition is unique if it exists, so all columns k > 1 are zeros. %C A352833 Conjecture: %C A352833 (1) This is A064428 interleaved with A001522. %C A352833 (2) Reversing rows gives A300788, the strict version of A300787. %e A352833 Triangle begins: %e A352833 0: {1,0} %e A352833 1: {0,1} %e A352833 2: {1,1} %e A352833 3: {2,1} %e A352833 4: {3,2} %e A352833 5: {4,3} %e A352833 6: {6,5} %e A352833 7: {8,7} %e A352833 8: {12,10} %e A352833 9: {16,14} %e A352833 For example, row n = 7 counts the following partitions: %e A352833 (7) (52) %e A352833 (61) (421) %e A352833 (511) (322) %e A352833 (43) (3211) %e A352833 (4111) (2221) %e A352833 (331) (22111) %e A352833 (31111) (1111111) %e A352833 (211111) %t A352833 pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; %t A352833 Table[Length[Select[IntegerPartitions[n],pq[#]==k&]],{n,0,15},{k,0,1}] %Y A352833 Row sums are A000041. %Y A352833 The version for permutations is A008290, for nonfixed points A098825. %Y A352833 The columns appear to be A064428 and A001522. %Y A352833 The version counting strong nonexcedances is A114088. %Y A352833 The version for compositions is A238349, rank statistic A352512. %Y A352833 The version for reversed partitions is A238352. %Y A352833 Reversing rows appears to give A300788, the strict case of A300787. %Y A352833 A000700 counts self-conjugate partitions, ranked by A088902. %Y A352833 A115720 and A115994 count partitions by their Durfee square. %Y A352833 A330644 counts non-self-conjugate partitions, ranked by A352486. %Y A352833 Cf. A000701, A219282, A257990, A350839, A352513, A352521-A352525. %K A352833 nonn,tabf %O A352833 0,7 %A A352833 _Gus Wiseman_, Apr 08 2022