cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352833 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k fixed points, k = 0, 1.

This page as a plain text file.
%I A352833 #15 Jul 09 2025 04:58:42
%S A352833 1,0,0,1,1,1,2,1,3,2,4,3,6,5,8,7,12,10,16,14,23,19,30,26,42,35,54,47,
%T A352833 73,62,94,82,124,107,158,139,206,179,260,230,334,293,420,372,532,470,
%U A352833 664,591,835,740,1034,924,1288,1148,1588,1422,1962,1756,2404,2161
%N A352833 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k fixed points, k = 0, 1.
%C A352833 A fixed point of a sequence y is an index y(i) = i. A fixed point of a partition is unique if it exists, so all columns k > 1 are zeros.
%C A352833 Conjecture:
%C A352833 (1) This is A064428 interleaved with A001522.
%C A352833 (2) Reversing rows gives A300788, the strict version of A300787.
%e A352833 Triangle begins:
%e A352833   0: {1,0}
%e A352833   1: {0,1}
%e A352833   2: {1,1}
%e A352833   3: {2,1}
%e A352833   4: {3,2}
%e A352833   5: {4,3}
%e A352833   6: {6,5}
%e A352833   7: {8,7}
%e A352833   8: {12,10}
%e A352833   9: {16,14}
%e A352833 For example, row n = 7 counts the following partitions:
%e A352833   (7)       (52)
%e A352833   (61)      (421)
%e A352833   (511)     (322)
%e A352833   (43)      (3211)
%e A352833   (4111)    (2221)
%e A352833   (331)     (22111)
%e A352833   (31111)   (1111111)
%e A352833   (211111)
%t A352833 pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
%t A352833 Table[Length[Select[IntegerPartitions[n],pq[#]==k&]],{n,0,15},{k,0,1}]
%Y A352833 Row sums are A000041.
%Y A352833 The version for permutations is A008290, for nonfixed points A098825.
%Y A352833 The columns appear to be A064428 and A001522.
%Y A352833 The version counting strong nonexcedances is A114088.
%Y A352833 The version for compositions is A238349, rank statistic A352512.
%Y A352833 The version for reversed partitions is A238352.
%Y A352833 Reversing rows appears to give A300788, the strict case of A300787.
%Y A352833 A000700 counts self-conjugate partitions, ranked by A088902.
%Y A352833 A115720 and A115994 count partitions by their Durfee square.
%Y A352833 A330644 counts non-self-conjugate partitions, ranked by A352486.
%Y A352833 Cf. A000701, A219282, A257990, A350839, A352513, A352521-A352525.
%K A352833 nonn,tabf
%O A352833 0,7
%A A352833 _Gus Wiseman_, Apr 08 2022