cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352834 Least k > 0 such that denominator( d(k*n)/(k*n) ) = n, or 0 if no such k exists, where d = A000005 is the number-of-divisors function.

Original entry on oeis.org

1, 4, 1, 1, 1, 12, 1, 10, 12, 2, 1, 20, 1, 2, 1, 1, 1, 0, 1, 24, 1, 2, 1, 2, 1, 2, 1, 20, 1, 0, 1, 14, 1, 2, 1, 24, 1, 2, 1, 4, 1, 40, 1, 20, 12, 2, 1, 3, 1, 4, 1, 20, 1, 18, 1, 2, 1, 2, 1, 32, 1, 2, 12, 1, 1, 40, 1, 20, 1, 48, 1, 0, 1, 2, 36, 20, 1, 40, 1, 5, 1, 2, 1, 4, 1, 2, 1, 2, 1, 48
Offset: 1

Views

Author

M. F. Hasler, Apr 04 2022

Keywords

Comments

This sequence is motivated by the fact that A091895(n) is always a multiple of n, so we list here the ratio A091895(n)/n.
Record values are a(1) = 1, a(2) = 4, a(6) = a(9) = 12, a(12) = 20,
a(20) = a(36) = 24, a(42) = a(66) = 40, a(70) = a(90) = a(110) = a(120) =
a(126) = a(130) = a(170) = a(190) = a(198) = 48, a(210) = a(330) = a(390) = 64,
a(420) = a(660) = a(780) = a(900) = a(1020) = 96,
a(1050) = a(1134) = 120, a(1470) = a(1680) = a(1890) = 144,
a(2310) = a(2730) = a(3150) = a(3570) = a(3990) = a(4290) = 192,
a(4320) = 210, a(6300) = 216, a(7560) = 240, a(9240) = a(10920) = 288,
a(13860) = a(16380) = a(17820) = a(20020) = 336, a(20790) = 360,
a(23760) = a(28080) = 420, a(34650) = a(40950) = 432,
a(41580) = a(49140) = 480, a(60060) = a(78540) = a(80850) = a(87780) = 576,
a(90090) = 672, ...
Up to n = 10^6, the terms are bounded by a(n) < 16*n^(1/3). The largest ratios r(n) := a(n)/n^(1/3) are r(2310) ~ 14.5, r(23760) ~ 14.6, r(60060) ~ 14.7, r(90090) ~ 14.99, r(154440) ~ 15.66, r(201960) = 14.3, r(270270) = 14.85, r(420420) = 14.4, r(510510) = 14.4, r(720720) = 14.05, ...

Crossrefs

Cf. A000005 (number-of-divisors function), A090395 (denominator of d(n)/n), A091895 (a(n)*n), A091896 (indices of zeros of a(n)).

Programs

  • PARI
    apply( {A352834(n,L=n^2*2)=forstep(k=n,L,n,denominator(numdiv(k)/k)==n&&return(k/n))}, [1..99])

Formula

a(n) = A091895(n)/n; a(n) = 0 iff n is in A091896.
Conjecture: a(n) = O(n^(1/3)).