cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A352126 Primes p such that, if q is the next prime, both p+q^2 and p^2+q are primes times powers of 10.

Original entry on oeis.org

2, 4806589, 8369989, 11168569, 20666869, 25068349, 25465249, 29046469, 37597849, 40593349, 44242669, 45405889, 47975869, 49637149, 50057569, 51468349, 57060469, 59570449, 64602589, 64707889, 65940769, 70752049, 75879169, 81799789, 87845869, 90277249, 92415649, 93315889, 95458249, 97225069
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 05 2022

Keywords

Comments

Primes prime(k) such that when any trailing zeros are removed from A349660(k) and A352851(k), the results are prime.
Except for 2, each term and the next prime == 19 (mod 30).

Examples

			a(3) = 8369989 is a term because it is prime, the next prime is 8370049,
8369989+8370049^2 = 70057728632390, 8369989^2+8370049 = 70056724230170, and 7005772863239 and 7005672423017 are prime.
		

Crossrefs

Intersection of A352837 and A352852.

Programs

  • Maple
    R:= NULL: count:= 0:
    q:= 2:
    while count < 30 do
      p:= q; q:= nextprime(p);
      w:= p+q^2;
      m:= padic:-ordp(w,2);
      if padic:-ordp(w,5) <> m then next fi;
      if m > 0 then w:= w/10^m fi;
      if not isprime(w) then next fi;
      v:= p^2+q;
      m:= padic:-ordp(v,2);
      if padic:-ordp(v,5) <> m then next fi;
      if m > 0 then v:= v/10^m fi;
      if isprime(v) then count:= count+1; R:= R, p; fi
    od:
    R;

A352803 a(n) is the first prime p such that, with q the next prime, p^2+q is 10^n times a prime.

Original entry on oeis.org

2, 523, 2243, 39419, 763031, 37427413, 594527413, 5440486343, 1619625353, 35960850223, 17012632873031, 43502632873031, 2322601810486343, 5470654702304929, 99466287423954043, 1917321601810486343, 6091565756519625353
Offset: 0

Views

Author

J. M. Bergot and Robert Israel, Apr 05 2022

Keywords

Comments

From Daniel Suteu, Dec 28 2022: (Start)
For n >= 1, a(n) has the form k * 10^n + x, for some k >= 0, where x is a solution to the modular quadratic equation x^2 + x + d == 0 (mod 10^n), where d = q-p.
a(17) <= 379430283012423635659, a(18) <= 1857717470295105527413. (End)

Examples

			a(2) = 2243 because 2243 is prime, the next prime is 2251, 2243^2+2251 = 5033300 = 10^2*50333 and 50333 is prime.
		

Crossrefs

Programs

  • Maple
    V:= Array(0..5):
    count:= 0:
    q:= 2:
    while count < 6 do
      p:= q; q:= nextprime(p);
      v:= p^2+q;
      r:= padic:-ordp(v, 2);
      if r <= 5 and V[r] = 0 and padic:-ordp(v, 5) = r and isprime(v/10^r) then
         V[r]:= p; count:= count+1;
      fi;
    od:
    convert(V, list);
  • PARI
    isok(n,p,q) = my(v=valuation(p^2+q, 10)); (v == n) && isprime((p^2+q)/10^v);
    a(n) = my(p=2); forprime(q=p+1, oo, if(isok(n,p,q), return(p)); p=q); \\ Daniel Suteu, Apr 07 2022

Extensions

a(6)-a(9) from Daniel Suteu, Apr 07 2022
a(10)-a(16) from Daniel Suteu, Dec 28 2022
Showing 1-2 of 2 results.