cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A351722 a(n) is the number of permutations p of {1, 2, ..., 2*n} such that for any k in 1..2*n, k and p(k) do not share a common 1-bit.

Original entry on oeis.org

1, 1, 1, 1, 1, 9, 9, 1, 1, 121, 1089, 729, 729, 1521, 169, 1, 1, 2601, 314721, 1771561, 15944049
Offset: 0

Views

Author

Rémy Sigrist, Apr 06 2022

Keywords

Comments

By the pigeonhole principle, and simply considering parities of k and p(k), there are no such permutation of {1, 2, ..., 2*n+1}.

Examples

			For n = 5:
- we have the following 9 permutations (shown in decimal and in binary):
  p\k  1 2 3 4  5 6 7 8 9 10 |    1   10  11 100  101  110  111 1000 1001 1010
  --- -----------------------+------------------------------------------------
  p1   6 5 4 3 10 9 8 7 2  1 |  110  101 100  11 1010 1001 1000  111   10    1
  p2  10 5 4 3  2 9 8 7 6  1 | 1010  101 100  11   10 1001 1000  111  110    1
  p3   2 5 4 3 10 9 8 7 6  1 |   10  101 100  11 1010 1001 1000  111  110    1
  p4   6 9 4 3 10 1 8 7 2  5 |  110 1001 100  11 1010    1 1000  111   10  101
  p5   6 1 4 3 10 9 8 7 2  5 |  110    1 100  11 1010 1001 1000  111   10  101
  p6  10 9 4 3  2 1 8 7 6  5 | 1010 1001 100  11   10    1 1000  111  110  101
  p7   2 9 4 3 10 1 8 7 6  5 |   10 1001 100  11 1010    1 1000  111  110  101
  p8  10 1 4 3  2 9 8 7 6  5 | 1010    1 100  11   10 1001 1000  111  110  101
  p9   2 1 4 3 10 9 8 7 6  5 |   10    1 100  11 1010 1001 1000  111  110  101
- so a(5) = 9.
		

Crossrefs

Programs

  • PARI
    a(n) = matpermanent(matrix(2*n, 2*n, i,j, bitand(i,j)==0))

Formula

a(n) = 1 for any n in A000225 (the only solution is k -> 2*n+1-k).
a(2^k) = 1 for any k >= 0 (the only solution is row 2^k in A253515).
Showing 1-1 of 1 results.