cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352860 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k) * 2^k * a(k).

This page as a plain text file.
%I A352860 #11 Jun 18 2022 14:13:48
%S A352860 1,1,5,67,2273,187411,36539465,16496912587,16958655627233,
%T A352860 39148957534778851,200638280176080172025,2261092739579072893806907,
%U A352860 55582179517311967755693514193,2960001149710485505367113202321491,339497331023047752386812273780566932585
%N A352860 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k) * 2^k * a(k).
%H A352860 Seiichi Manyama, <a href="/A352860/b352860.txt">Table of n, a(n) for n = 0..77</a>
%F A352860 E.g.f. A(x) satisfies: A(x) = 1 + (exp(x) - 1) * A(2*x).
%F A352860 a(n) ~ c * n! * 2^(n*(n-1)/2), where c = 1.572986203588985421674040830458773854660492965929302012... - _Vaclav Kotesovec_, Apr 07 2022
%t A352860 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] 2^k a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 14}]
%t A352860 nmax = 14; A[_] = 0; Do[A[x_] = 1 + (Exp[x] - 1) A[2 x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!
%o A352860 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, 2^j*binomial(i, j)*v[j+1])); v; \\ _Seiichi Manyama_, Jun 18 2022
%Y A352860 Cf. A000670, A122704, A126443, A352859.
%K A352860 nonn
%O A352860 0,3
%A A352860 _Ilya Gutkovskiy_, Apr 06 2022