This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352861 #6 Apr 07 2022 09:25:38 %S A352861 1,2,7,28,121,570,2911,15968,93433,580162,3806275,26284368,190415809, %T A352861 1442982350,11409436363,93913277608,803094241309,7121757279798, %U A352861 65383520552131,620517308328812,6079168380979213,61402851498255790,638674759049919079,6833589979500278700 %N A352861 a(n) = 1 + Sum_{k=0..n-1} binomial(n+2,k+3) * a(k). %F A352861 G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * A(x/(1 - x)) / (1 - x)^4. %F A352861 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(n+1,k+2) * a(k). %t A352861 a[n_] := a[n] = 1 + Sum[Binomial[n + 2, k + 3] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 23}] %t A352861 nmax = 23; A[_] = 0; Do[A[x_] = 1/(1 - x) + x A[x/(1 - x)]/(1 - x)^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] %Y A352861 Cf. A000110, A032346, A032347, A045499, A045501, A186021, A352862. %K A352861 nonn %O A352861 0,2 %A A352861 _Ilya Gutkovskiy_, Apr 06 2022