cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352863 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n+3,k+3) * a(k).

This page as a plain text file.
%I A352863 #5 Apr 07 2022 09:24:50
%S A352863 1,4,30,260,2625,30296,393372,5675160,90062775,1559197420,29242803018,
%T A352863 590638256572,12781663255725,295040675093360,7236113219901240,
%U A352863 187911083837928048,5150869386839932995,148622674413214927140,4502761102131604279590,142914444471765753144820
%N A352863 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n+3,k+3) * a(k).
%F A352863 E.g.f.: d^3/dx^3 ( x^3 / (3!*(2 - exp(x))) ).
%F A352863 a(n) = A000292(n+1) * A000670(n).
%t A352863 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n + 3, k + 3] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
%t A352863 nmax = 19; CoefficientList[Series[D[x^3/(3! (2 - Exp[x])), {x, 3}], {x, 0, nmax}], x] Range[0, nmax]!
%Y A352863 Cf. A000292, A000670, A045499, A052882, A105480, A154931, A240798.
%K A352863 nonn
%O A352863 0,2
%A A352863 _Ilya Gutkovskiy_, Apr 06 2022