cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352869 Expansion of e.g.f. 1/(1 - Sum_{k>=1} mu(k) * x^k/k!), where mu() is the Moebius function (A008683).

This page as a plain text file.
%I A352869 #10 Apr 06 2022 11:46:20
%S A352869 1,1,1,-1,-14,-71,-201,559,14152,125772,568873,-2930247,-100950588,
%T A352869 -1263405885,-7645798213,62733063199,2644646815760,42203809509047,
%U A352869 312892097907012,-3774840465405301,-184229592151309092,-3541775382376189109,-30473600413019593651
%N A352869 Expansion of e.g.f. 1/(1 - Sum_{k>=1} mu(k) * x^k/k!), where mu() is the Moebius function (A008683).
%F A352869 a(0) = 1; a(n) = Sum_{k=1..n} mu(k) * binomial(n,k) * a(n-k).
%o A352869 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, moebius(k)*x^k/k!))))
%o A352869 (PARI) a(n) = if(n==0, 1, sum(k=1, n, moebius(k)*binomial(n, k)*a(n-k)));
%Y A352869 Cf. A008683, A300663, A300673.
%K A352869 sign
%O A352869 0,5
%A A352869 _Seiichi Manyama_, Apr 06 2022