This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352872 #8 May 15 2022 11:49:49 %S A352872 2,4,6,8,9,10,12,14,16,18,20,22,24,26,27,28,30,32,34,36,38,40,42,44, %T A352872 45,46,48,50,52,54,56,58,60,62,63,64,66,68,70,72,74,75,76,78,80,81,82, %U A352872 84,86,88,90,92,94,96,98,99,100,102,104,106,108,110,112,114 %N A352872 Numbers whose weakly increasing prime indices y have a fixed point y(i) = i. %C A352872 First differs from A118672 in having 75. %C A352872 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A352872 The terms together with their prime indices begin: %e A352872 2: {1} 28: {1,1,4} 56: {1,1,1,4} %e A352872 4: {1,1} 30: {1,2,3} 58: {1,10} %e A352872 6: {1,2} 32: {1,1,1,1,1} 60: {1,1,2,3} %e A352872 8: {1,1,1} 34: {1,7} 62: {1,11} %e A352872 9: {2,2} 36: {1,1,2,2} 63: {2,2,4} %e A352872 10: {1,3} 38: {1,8} 64: {1,1,1,1,1,1} %e A352872 12: {1,1,2} 40: {1,1,1,3} 66: {1,2,5} %e A352872 14: {1,4} 42: {1,2,4} 68: {1,1,7} %e A352872 16: {1,1,1,1} 44: {1,1,5} 70: {1,3,4} %e A352872 18: {1,2,2} 45: {2,2,3} 72: {1,1,1,2,2} %e A352872 20: {1,1,3} 46: {1,9} 74: {1,12} %e A352872 22: {1,5} 48: {1,1,1,1,2} 75: {2,3,3} %e A352872 24: {1,1,1,2} 50: {1,3,3} 76: {1,1,8} %e A352872 26: {1,6} 52: {1,1,6} 78: {1,2,6} %e A352872 27: {2,2,2} 54: {1,2,2,2} 80: {1,1,1,1,3} %e A352872 For example, the multiset {2,3,3} with Heinz number 75 has a fixed point at position 3, so 75 is in the sequence. %t A352872 pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; %t A352872 Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>0&] %Y A352872 * = unproved %Y A352872 These partitions are counted by A238395, strict A096765. %Y A352872 These are the nonzero positions in A352822. %Y A352872 *The complement reverse version is A352826, counted by A064428. %Y A352872 *The reverse version is A352827, counted by A001522 (strict A352829). %Y A352872 The complement is A352830, counted by A238394 (strict A025147). %Y A352872 A000700 counts self-conjugate partitions, ranked by A088902. %Y A352872 A001222 counts prime indices, distinct A001221. %Y A352872 A008290 counts permutations by fixed points, nonfixed A098825. %Y A352872 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A352872 A114088 counts partitions by excedances. %Y A352872 A115720 and A115994 count partitions by their Durfee square. %Y A352872 A122111 represents partition conjugation using Heinz numbers. %Y A352872 A124010 gives prime signature, sorted A118914, conjugate rank A238745. %Y A352872 A238349 counts compositions by fixed points, complement A352523. %Y A352872 A238352 counts reversed partitions by fixed points. %Y A352872 A352833 counts partitions by fixed points. %Y A352872 Cf. A062457, A064410, A065770, A093641, A257990, A325187, A342192, A352486, A352823, A352824, A352825, A352831, A352832. %K A352872 nonn %O A352872 1,1 %A A352872 _Gus Wiseman_, Apr 06 2022