cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352873 Heinz numbers of integer partitions with nonnegative crank, counted by A064428.

This page as a plain text file.
%I A352873 #10 May 15 2022 11:50:12
%S A352873 1,3,5,6,7,9,10,11,13,14,15,17,18,19,21,22,23,25,26,27,29,30,31,33,34,
%T A352873 35,37,38,39,41,42,43,45,46,47,49,50,51,53,54,55,57,58,59,61,62,63,65,
%U A352873 66,67,69,70,71,73,74,75,77,78,79,81,82,83,85,86,87,89,90
%N A352873 Heinz numbers of integer partitions with nonnegative crank, counted by A064428.
%C A352873 First differs from A042968, A059557, and A195291 in lacking 2 and having 100.
%C A352873 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%C A352873 The crank of a partition p is defined to be (i) the largest part of p if there is no 1 in p and (ii) (the number of parts larger than the number of 1's) minus (the number of 1's). [Definition copied from A342192; see A064428 for a different wording.]
%F A352873 Union of A352874 and A342192.
%e A352873 The terms together with their prime indices begin:
%e A352873      1: ()         22: (5,1)      42: (4,2,1)
%e A352873      3: (2)        23: (9)        43: (14)
%e A352873      5: (3)        25: (3,3)      45: (3,2,2)
%e A352873      6: (2,1)      26: (6,1)      46: (9,1)
%e A352873      7: (4)        27: (2,2,2)    47: (15)
%e A352873      9: (2,2)      29: (10)       49: (4,4)
%e A352873     10: (3,1)      30: (3,2,1)    50: (3,3,1)
%e A352873     11: (5)        31: (11)       51: (7,2)
%e A352873     13: (6)        33: (5,2)      53: (16)
%e A352873     14: (4,1)      34: (7,1)      54: (2,2,2,1)
%e A352873     15: (3,2)      35: (4,3)      55: (5,3)
%e A352873     17: (7)        37: (12)       57: (8,2)
%e A352873     18: (2,2,1)    38: (8,1)      58: (10,1)
%e A352873     19: (8)        39: (6,2)      59: (17)
%e A352873     21: (4,2)      41: (13)       61: (18)
%t A352873 ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
%t A352873 Select[Range[100],ck[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]>=0&]
%Y A352873 * = unproved
%Y A352873 These partitions are counted by A064428.
%Y A352873 The case of zero crank is A342192, counted by A064410.
%Y A352873 The case of positive crank is A352874.
%Y A352873 A000700 counts self-conjugate partitions, ranked by A088902.
%Y A352873 A001222 counts prime indices, distinct A001221.
%Y A352873 *A001522 counts partitions with a fixed point, ranked by A352827.
%Y A352873 A056239 adds up prime indices, row sums of A112798 and A296150.
%Y A352873 *A064428 counts partitions without a fixed point, ranked by A352826.
%Y A352873 A115720 and A115994 count partitions by their Durfee square.
%Y A352873 A122111 represents partition conjugation using Heinz numbers.
%Y A352873 A238394 counts reversed partitions without a fixed point, ranked by A352830.
%Y A352873 Cf. A065770, A093641, A118199, A188674, A252464, A257990, A325163, A325169, A344609, A352828, A352831.
%K A352873 nonn
%O A352873 1,2
%A A352873 _Gus Wiseman_, Apr 09 2022