This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352875 #10 Jan 02 2023 21:55:08 %S A352875 0,1,1,2,5,10,21,42,86,174,351,708,1424,2861,5743,11520,23092,46269, %T A352875 92673,185562,371469,743491,1487870,2977164,5956616,11916910,23839736, %U A352875 47688994,95393322,190811346,381662507,763389209,1526881959,3053930971,6108131542,12216698288 %N A352875 Number of integer compositions y of n with a fixed point y(i) = i. %H A352875 Andrew Howroyd, <a href="/A352875/b352875.txt">Table of n, a(n) for n = 0..1000</a> %F A352875 a(n) = 2^(n-1) - A238351(n) for n >= 1. - _Andrew Howroyd_, Jan 02 2023 %e A352875 The a(0) = 0 through a(5) = 10 compositions (empty column indicated by dot): %e A352875 . (1) (11) (12) (13) (14) %e A352875 (111) (22) (32) %e A352875 (112) (113) %e A352875 (121) (122) %e A352875 (1111) (131) %e A352875 (221) %e A352875 (1112) %e A352875 (1121) %e A352875 (1211) %e A352875 (11111) %t A352875 pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; %t A352875 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pq[#]>0&]],{n,0,15}] %o A352875 (PARI) %o A352875 S(v,u,c)={vector(#v, k, c + sum(i=1, k-1, v[k-i]*u[i]))} %o A352875 seq(n)={my(v=vector(1+n), s=vector(#v, i, 2^(i-2))); v[1]=1; s[1]=0; for(i=1, n, v=S(v, vector(n, j, if(j==i,'x,1)), O(x)); s-=apply(p->polcoef(p,0), v)); s} \\ _Andrew Howroyd_, Jan 02 2023 %Y A352875 The version for partitions is A001522, ranked by A352827 (unproved). %Y A352875 The version for permutations is A002467, complement A000166. %Y A352875 The complement for partitions is A064428, ranked by A352826 (unproved). %Y A352875 This is the sum of latter columns of A238349, nonfixed A352523. %Y A352875 The complement is counted by A238351. %Y A352875 The complement for reversed partitions is A238394, ranked by A352830. %Y A352875 The version for reversed partitions is A238395, ranked by A352872. %Y A352875 The case of just one fixed point is A240736. %Y A352875 A008290 counts permutations by fixed points, nonfixed A098825. %Y A352875 A011782 counts compositions. %Y A352875 A115720 and A115994 count partitions by Durfee square. %Y A352875 A238352 counts reversed partitions by fixed points, rank statistic A352822. %Y A352875 A352512 counts fixed points in standard compositions, nonfixed A352513. %Y A352875 A352521 = comps by subdiags, first col A219282, rank stat A352514. %Y A352875 A352522 = comps by weak subdiags, first col A238874, rank stat A352515. %Y A352875 A352524 = comps by superdiags, first col A008930, rank stat A352516. %Y A352875 A352525 = comps by weak superdiags, col k=1 A177510, rank stat A352517. %Y A352875 A352833 counts partitions by fixed points. %Y A352875 Cf. A006918, A008292, A088218, A114088, A123125, A188674, A257990. %K A352875 nonn %O A352875 0,4 %A A352875 _Gus Wiseman_, May 15 2022 %E A352875 Terms a(21) and beyond from _Andrew Howroyd_, Jan 02 2023