This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352881 #174 Mar 11 2025 22:09:26 %S A352881 2,12,60,840,9240,55440,720720,6126120,116396280,232792560,5354228880, %T A352881 26771144400,465817912560,4813451763120,24067258815600, %U A352881 144403552893600,2671465728531600,36510031623265200,219060189739591200,4709794079401210800,18839176317604843200,221360321731856907600 %N A352881 a(n) is the minimal number z having the largest number of solutions to the Diophantine equation 1/z = 1/x + 1/y such that 1 <= x <= y <= 10^n. %C A352881 Solving for z gives z = (x*y) / (x+y), so x*y == 0 (mod x+y). %C A352881 All known terms are from A025487: %C A352881 a(1) = 2 = 2; %C A352881 a(2) = 12 = 2^2 * 3; %C A352881 a(3) = 60 = 2^2 * 3 * 5; %C A352881 a(4) = 840 = 2^3 * 3 * 5 * 7; %C A352881 a(5) = 9240 = 2^3 * 3 * 5 * 7 * 11. %C A352881 If a solution to the equation 1/z = 1/x + 1/y is found such that gcd(x,y,z) is a square, then x+y, x*y*z, and (x-y)^2 + (2*z)^2 are also squares. %C A352881 For all solutions, x^2 + y^2 + z^2 is a square. %C A352881 The sequence is indeed a subsequence of A025487, and likely of A126098 as well. - _Max Alekseyev_, Mar 01 2023 %C A352881 a(n) < 5*10^(n-1). - _Max Alekseyev_, Mar 01 2023 %H A352881 Max Alekseyev, <a href="/A352881/b352881.txt">Table of n, a(n) for n = 1..30</a> %H A352881 Project Euler, <a href="https://projecteuler.net/problem=108">Diophantine reciprocals I, Problem 108</a>. %e A352881 For n=1, we have the following, where r = (x*y) mod (x+y). (In the last four columns, each number marked by an asterisk is a square.) %e A352881 . %e A352881 r z x y x*y x+y x*y*z x^2+y^2+z^2 %e A352881 - - - - --- --- ----- ----------- %e A352881 0 1 2 2 4* 4* 4* 9* (solution) %e A352881 2 1 2 4 8 6 8 21 %e A352881 4 1 2 6 12 8 12 41 %e A352881 6 1 2 8 16* 10 16* 69 %e A352881 3 1 3 3 9 6 9* 19 %e A352881 0 2 3 6 18* 9* 36* 49* (solution) %e A352881 3 2 3 9 27 12 54 94 %e A352881 0 2 4 4 16* 8 32 36* (solution) %e A352881 8 2 4 8 32 12 64* 84 %e A352881 5 2 5 5 25* 10 50 54 %e A352881 0 3 6 6 36* 12 108 81* (solution) %e A352881 7 3 7 7 49* 14 147 107 %e A352881 0 4 8 8 64* 16* 256* 144* (solution) %e A352881 9 4 9 9 81* 18 324* 178 %e A352881 . %e A352881 z = 2 has the largest number of solutions, so a(1) = 2. %e A352881 The number of solutions for the resulting z cannot exceed A018892(z). %o A352881 (Python) %o A352881 def a(n): %o A352881 # k=x*y and d=x+y %o A352881 bc, bk, L = 0, None, 10**n %o A352881 for k in range(1, L): %o A352881 c, k2 = 0, k * k %o A352881 for d in range(max(1, k2 // (L - k) + 1), k + 1): %o A352881 if k2 % d == 0: c += 1 %o A352881 if c > bc: %o A352881 bc, bk = c, k %o A352881 return bk %o A352881 (PARI) %o A352881 a(n)=my(bc=0,bk=0,L=10^n);for(k=1,L-1,my(c=0,k2=k^2);for(d=max(1,k2\(L-k)+1),k,if(k2%d==0,c++););if(c>bc,bc=c;bk=k););return(bk); \\ _Darío Clavijo_, Mar 03 2025 %Y A352881 Cf. A025487, A099829, A126098, A067128, A018892, A126098, A225206. %K A352881 nonn %O A352881 1,1 %A A352881 _Darío Clavijo_, Apr 06 2022 %E A352881 a(6) from _Chai Wah Wu_, Apr 10 2022 %E A352881 a(7)-a(22) from _Max Alekseyev_, Mar 01 2023