cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352900 a(n) is the number of different ways to partition the set of vertices of a convex n-gon into intersecting polygons.

This page as a plain text file.
%I A352900 #54 Aug 04 2025 07:47:06
%S A352900 0,0,0,7,28,79,460,2486,11209,59787,361777,2167635,13577211,91919186,
%T A352900 650059294,4761980740,36508824672,292116858616,2424047807182,
%U A352900 20847409357919,185754041370693,1711253802075941,16272637412753211,159561718074359537,1611599794862761838,16747401536440092104
%N A352900 a(n) is the number of different ways to partition the set of vertices of a convex n-gon into intersecting polygons.
%F A352900 a(n) = A006505(n) - A114997(n).
%F A352900 a(n) = Sum_{k=2..floor(n/3)} (T(n,k) - C(n+1,k)*C(n-2k-1,k-1)/(n+1)); n > 5, where T(n,k) = k*T(n-1,k) + C(n-1,2)*T(n-3,k-1); n > 5 and 1 < k <= floor(n/3), T(n,k) = 1 when k = 1.
%F A352900 T(n,k) = A059022(n,k) is the number of different ways to partition the set of vertices of a convex n-gon into k polygons.
%e A352900 For n=6, there are a(6) = 7 intersecting partitions of the convex hexagon. On vertices 1..6, they are the following pairs of triangles:
%e A352900   {1,3,4}, {5,6,2}
%e A352900   {4,5,1}, {2,3,6}
%e A352900   {3,4,6}, {1,2,5}
%e A352900   {2,3,5}, {1,4,6}
%e A352900   {1,2,4}, {5,6,3}
%e A352900   {1,6,3}, {5,4,2}
%e A352900   {1,3,5}, {2,4,6}
%o A352900 (PARI) T2(n,k) = if (n<3, 0, if (k==1, 1, k*T2(n-1,k) + binomial(n-1,2)*T2(n-3,k-1))); \\ A059022
%o A352900 a5(n) = if (n<3, n==0, sum(k=1, n\3, T2(n,k))); \\ A006505
%o A352900 a7(n) = sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ A114997
%o A352900 a(n) =  a5(n) - a7(n); \\ _Michel Marcus_, Apr 09 2022
%Y A352900 Cf. A006505, A059022, A114997, A350248.
%K A352900 nonn
%O A352900 3,4
%A A352900 _Janaka Rodrigo_, Apr 07 2022
%E A352900 More terms from _Michel Marcus_, Apr 09 2022