A352911 Cantor's List: Pairs (i, j) of relatively prime positive integers sorted first by i + j then by i.
1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 4, 2, 3, 3, 2, 4, 1, 1, 5, 5, 1, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 1, 7, 3, 5, 5, 3, 7, 1, 1, 8, 2, 7, 4, 5, 5, 4, 7, 2, 8, 1, 1, 9, 3, 7, 7, 3, 9, 1, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 1, 11, 5, 7, 7, 5, 11, 1
Offset: 1
Examples
The first few pairs are, seen as an irregular triangle: [1, 1], [1, 2], [2, 1], [1, 3], [3, 1], [1, 4], [2, 3], [3, 2], [4, 1], [1, 5], [5, 1], [1, 6], [2, 5], [3, 4], [4, 3], [5, 2], [6, 1], [1, 7], [3, 5], [5, 3], [7, 1], [1, 8], [2, 7], [4, 5], [5, 4], [7, 2], [8, 1], [1, 9], [3, 7], [7, 3], [9, 1], ...
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..9914
- Georg Cantor, Ein Beitrag zur Mannigfaltigkeitslehre, Journal für die reine und angewandte Mathematik 84 (1878), 242-258, (p. 250).
- N. J. A. Sloane, List of the 4957 pairs (i,j) with i+j <= 127. [Note this is not a b-file.]
- Index entries for sequences related to enumerating the rationals
Programs
-
Maple
CantorsList := proc(upto) local C, F, n, t, count; C := NULL; count := 0: for n from 2 while count < upto do F := select(t -> igcd(t, n-t) = 1, [$1..n-1]); C := C, seq([t, n - t], t = F); count := count + nops(F) od: ListTools:-Flatten([C]) end: CantorsList(40); # Peter Luschny, Oct 10 2023
-
Mathematica
A352911row[n_]:=Select[Array[{#,n-#}&,n-1],CoprimeQ[First[#],Last[#]]&]; Array[A352911row,10,2] (* Generates 10 rows *) (* Paolo Xausa, Oct 10 2023 *)
-
Python
from math import gcd from itertools import chain, count, islice def A352911_gen(): # generator of terms return chain.from_iterable((i,n-i) for n in count(2) for i in range(1,n) if gcd(i,n-i)==1) A352911_list = list(islice(A352911_gen(),30)) # Chai Wah Wu, Oct 10 2023
Comments