This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352929 #12 May 03 2022 12:44:16 %S A352929 2,3,4,6,8,10,13,15,17,24,28,32,36,38,42,52,54,58,64,66,70,72,78,85, %T A352929 89,97,99,101,103,107,123,125,133,135,143,145,153,159,161,169,175,177, %U A352929 185,187,193,195,203,219,221,225,227,235,237,245,251,259,263,267,269,277,279,289,303,305,309,311,325,333,341,345,349,353,363,369,375,379,385,393 %N A352929 Indices of primes in A093714. %C A352929 Note this is different from "a(n) = index of prime(n) in A093714", which would start 3, 2, 4, 6, 8, ..., but would otherwise be the same. %H A352929 Michael De Vlieger, <a href="/A352929/b352929.txt">Table of n, a(n) for n = 1..10000</a> %t A352929 nn = 400; c[_] = False; c[1] = True; j = 1; u = 2; Reap[Do[k = u; While[Nand[! TrueQ@ c[k], CoprimeQ[j, k], k != j + 1], k++]; Set[{j, c[k]}, {k, True}]; If[PrimeQ@ k, Sow[i]]; If[k == u, While[TrueQ@ c[u], u++]], {i, 2, nn}]][[-1, -1]] (* _Michael De Vlieger_, May 03 2022 *) %o A352929 (Python) %o A352929 from math import gcd %o A352929 from sympy import isprime %o A352929 from itertools import count, islice %o A352929 def agen(): # generator of terms %o A352929 an, aset, mink = 1, {1}, 2 %o A352929 for n in count(1): %o A352929 if isprime(an): yield n %o A352929 k = mink %o A352929 while k in aset or gcd(an, k) != 1 or k-an == 1: k += 1 %o A352929 an = k %o A352929 aset.add(an) %o A352929 while mink in aset: mink += 1 %o A352929 print(list(islice(agen(), 78))) # _Michael S. Branicky_, May 03 2022 %Y A352929 Cf. A093714. %K A352929 nonn %O A352929 1,1 %A A352929 _N. J. A. Sloane_, May 03 2022