This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352947 #14 Jun 06 2022 08:05:08 %S A352947 10103,10111,10211,10223,10301,10303,10313,10321,10331,10427,10429, %T A352947 10501,10513,10529,10531,10601,10607,10613,10627,10709,10711,10723, %U A352947 10729,10831,10903,10909,11003,11027,11113,11117,11119,11213,20101,20107,20113,20117,20123 %N A352947 Prime numbers representing a date based on the proleptic Gregorian calendar in YY..YMMDD format. %e A352947 20050403 is a term because the date 'Apr 3, 2005' represented in YY..YMMDD format is 20050403, which is a prime number. %o A352947 (Python) %o A352947 from sympy import isprime %o A352947 for y in range(1, 3): %o A352947 for m in range(1, 13): %o A352947 d_max = 31 if m in {1, 3, 5, 7, 8, 10, 12} else 30 if m in {4, 6, 9, 11} else 28 if (y%4 or (y%400 and not y%100)) else 29 %o A352947 for d in range(1, d_max + 1): %o A352947 date = 10000*y + 100*m + d %o A352947 if isprime(date): print(date, end = ', ') %Y A352947 Cf. A227407, A227409, A354422. %K A352947 nonn,base %O A352947 1,1 %A A352947 _Ya-Ping Lu_, Apr 10 2022