This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352948 #15 Apr 20 2022 00:07:15 %S A352948 5,29,599,2687,3557,4337,5009,8597,23687,26249,26699,36527,37307, %T A352948 39509,55049,59669,61559,65519,69497,72269,72869,74507,75209,81017, %U A352948 82559,87557,92639,93479,97157,102407,103289,106217,114689,120917,136067,140627,147449,156797,162749,167117,179999,181397 %N A352948 Primes p such that p+2, (p^2-1)/2+p and (p^2+3)/2+3*p are also prime. %C A352948 Lower twin primes p such that if q = p+2, (p*q-1)/2 and (p*q-1)/2+p+q are also prime. %H A352948 Robert Israel, <a href="/A352948/b352948.txt">Table of n, a(n) for n = 1..10000</a> %e A352948 a(3) = 599 is a term because it, 599+2 = 601, (599*601-1)/2 = 179999, and 179999+599+601 = 181199 are prime. %t A352948 Select[Range[200000], And @@ PrimeQ[{#, # + 2, (#^2 - 1)/2 + # , (#^2 + 3)/2 + 3*#}] &] (* _Amiram Eldar_, Apr 10 2022 *) %o A352948 (Python) %o A352948 from itertools import islice %o A352948 from sympy import isprime, nextprime %o A352948 def agen(): # generator of terms %o A352948 p, q = 3, 5 %o A352948 while True: %o A352948 if q == p+2 and isprime((p*q-1)//2) and isprime((p*q-1)//2+p+q): %o A352948 yield p %o A352948 p, q = q, nextprime(q) %o A352948 print(list(islice(agen(), 42))) # _Michael S. Branicky_, Apr 10 2022 %Y A352948 Subset of A109945. %Y A352948 Cf. A001359. %K A352948 nonn %O A352948 1,1 %A A352948 _J. M. Bergot_ and _Robert Israel_, Apr 10 2022