This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352951 #24 Jun 12 2024 15:32:25 %S A352951 5,29,599,26699,59669,72869,189389,285839,389999,508619,623669,708989, %T A352951 862229,908879,945629,945809,953789,1002149,1134389,1138409,1431569, %U A352951 1461209,1712549,2110289,2127269,2158589,2704769,2727299,2837279,3004049,3068909,3091379,3280229,3336659,3402239,3546269 %N A352951 Primes p such that p+2, (p^2-5)/2-p, (p^2-1)/2+p, and (p^2+3)/2+3*p are all prime. %C A352951 Lower twin primes p such that if q = p+2, then (p*q-1)/2, (p*q-1)/2-p-q and (p*q-1)/2+p+q are also prime. %C A352951 All terms but the first == 29 (mod 30). %H A352951 Robert Israel, <a href="/A352951/b352951.txt">Table of n, a(n) for n = 1..2500</a> %e A352951 a(3)=599 is a term because it, 599+2 = 601, (599*601-1)/2 = 179999, 179999-599-601 = 178799, and 179999+599+601 = 181199 are prime. %p A352951 R:= 5: count:= 0: %p A352951 for p from 29 by 30 while count < 60 do %p A352951 if isprime(p) and isprime(p+2) then %p A352951 q:= p+2; r:= (p*q-1)/2; %p A352951 if isprime(r) and isprime(r+p+q) and isprime(r-p-q) then %p A352951 count:= count+1; R:= R,p; %p A352951 fi %p A352951 fi %p A352951 od: %p A352951 R; %t A352951 Select[Prime[Range[250000]], And @@ PrimeQ[{# + 2, (#^2 - 5)/2 - #, (#^2 - 1)/2 + #, (#^2 + 3)/2 + 3*#}] &] (* _Amiram Eldar_, Apr 11 2022 *) %t A352951 Select[Prime[Range[260000]],AllTrue[{#+2,(#^2-5)/2-#,(#^2-1)/2+#,(#^2+3)/2+3#},PrimeQ]&] (* _Harvey P. Dale_, Jun 12 2024 *) %o A352951 (Python) %o A352951 from itertools import islice %o A352951 from sympy import isprime, nextprime %o A352951 def agen(): # generator of terms %o A352951 p, q = 3, 5 %o A352951 while True: %o A352951 if q == p+2: %o A352951 t, s = (p*q-1)//2, p+q %o A352951 if isprime(t) and isprime(t+s) and isprime(t-s): %o A352951 yield p %o A352951 p, q = q, nextprime(q) %o A352951 print(list(islice(agen(), 36))) # _Michael S. Branicky_, Apr 10 2022 %Y A352951 Cf. A352948. %Y A352951 Subsequence of A001359. %K A352951 nonn %O A352951 1,1 %A A352951 _J. M. Bergot_ and _Robert Israel_, Apr 10 2022