This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352970 #42 Jul 26 2022 10:27:03 %S A352970 1729,294409,1033669,1082809,1773289,5444489,7995169,8719309,17098369, %T A352970 19384289,23382529,26921089,37964809,43620409,45890209,50201089, %U A352970 69331969,84311569,105309289,114910489,146843929,168659569,172947529,180115489,188516329,194120389,214852609,228842209,230996949,246446929,271481329 %N A352970 Carmichael numbers ending in 9. %C A352970 The first term is the Hardy-Ramanujan number. %H A352970 Amiram Eldar, <a href="/A352970/b352970.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..109 from Chai Wah Wu) %H A352970 <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>. %t A352970 Select[10*Range[0, 3*10^7] + 9, CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &] (* _Amiram Eldar_, May 28 2022 *) %o A352970 (Python) %o A352970 from itertools import islice %o A352970 from sympy import factorint, nextprime %o A352970 def A352970_gen(): # generator of terms %o A352970 p, q = 3, 5 %o A352970 while True: %o A352970 for n in range(p+11-((p+2) % 10),q,10): %o A352970 f = factorint(n) %o A352970 if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f): %o A352970 yield n %o A352970 p, q = q, nextprime(q) %o A352970 A352970_list = list(islice(A352970_gen(),5)) # _Chai Wah Wu_, May 11 2022 %Y A352970 Intersection of A002997 and A017377. %Y A352970 Subsequence of A053181. %Y A352970 Cf. A001235, A354609, A355305, A355307, A355309. %K A352970 nonn,base %O A352970 1,1 %A A352970 _Omar E. Pol_, Apr 12 2022