cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352971 Moments of the distribution of position of the first occurrence of pattern aa in a random ternary word.

This page as a plain text file.
%I A352971 #24 May 06 2023 21:32:28
%S A352971 1,12,258,8274,353742,18904602,1212354798,90706565514,7756033173342,
%T A352971 746093257148442,79745110236049038,9375786203927344554,
%U A352971 1202540991574287431742,167091435183140588426682,25003060551369349424359278,4008624526767825553573112394
%N A352971 Moments of the distribution of position of the first occurrence of pattern aa in a random ternary word.
%C A352971 Let X be the random variable that assigns to each word on alphabet {a,b,c} the number of letters required for the first occurrence of the pattern aa. Then a(n) = E(X^n).
%C A352971 Let X(m,k) be the random variable that assigns to each m-ary word the number of letters required for the first occurrence of the pattern aa...a (k copies of a). The moment generating function for X(m,k) is G(exp(t)) where G(t) = T(t/m), T(z) = z^k/(z^k + c(z)(1- m*z)), c(z) = (1-z^k)/(1-z).
%H A352971 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 59.
%F A352971 E.g.f.: exp(2*t)/(9 - 6*exp(t) - 2*exp(2*t)).
%F A352971 a(n) ~ n! * (3 - sqrt(3)) / (12 * (log(3*(sqrt(3) - 1)/2))^(n+1)). - _Vaclav Kotesovec_, Apr 13 2022
%p A352971 g := exp(2*x)/(9-6*exp(x)-2*exp(2*x)) ;
%p A352971 taylor(g,x=0,40) ;
%p A352971 L := gfun[seriestolist](%) ;
%p A352971 seq( op(i,L)*(i-1)!,i=1..nops(L)) ; # _R. J. Mathar_, Mar 02 2023
%t A352971 nn = 15; c[z_] := (1 - z^k)/(1 - z);
%t A352971 T[z_] := z^k/(z^k + (1 - m z) c[z]); G[t_] := T[t/m];
%t A352971 Range[0, nn]! CoefficientList[Series[G[Exp[t]] /. {k -> 2, m -> 3}, {t, 0, nn}],t]
%o A352971 (PARI) seq(n)=my(p=exp(x + O(x*x^n))); Vec(serlaplace(p^2/(9 - 6*p - 2*p^2))) \\ _Andrew Howroyd_, May 06 2023
%o A352971 (SageMath) # uses[egfExpand from A362718]
%o A352971 def egf(x): return exp(2*x)/(9 - 6*exp(x) - 2*exp(2*x))
%o A352971 print(egfExpand(egf, 1, 15))  # _Peter Luschny_, May 06 2023
%Y A352971 Cf. A302922.
%K A352971 nonn
%O A352971 0,2
%A A352971 _Geoffrey Critzer_, Apr 12 2022
%E A352971 Typo in a(7) corrected by _Georg Fischer_, May 06 2023