A354832 Integers m such that iterating the map f(x) = x^2 + 1 on m generates a number ending with m in binary format.
0, 1, 2, 5, 10, 26, 37, 90, 165, 421, 933, 1957, 4005, 8101, 8282, 24666, 40869, 106405, 237477, 286810, 811098, 1286053, 3383205, 5005402, 11771813, 28549029, 38559834, 105668698, 239886426, 296984485, 833855397, 1313628250, 3461111898, 7756079194, 9423789989
Offset: 1
Examples
26 is a term because iterating the map on 26 gives, in binary format, 11010 -> 1010100101 -> 1101111111001011010, which ends with 11010.
Programs
-
Python
R = [] for i in range(0, 34): t = 2**i; L = [] while t not in L: L.append(t); t = (t*t + 1) % 2**(i+1) {R.append(j) for j in {L[-1], L[-2]} if j not in R} R.sort(); print(*R, sep = ', ')
Comments