This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352979 #26 Sep 30 2022 06:02:11 %S A352979 0,1,585,28800,505280,4951530,33209946,170320080,714724560,2566030995, %T A352979 8130545995,23253835176,61054704360,149085989780,342048076020, %U A352979 743408003520,1540821690816,3062326169925,5862986735085,10855192630480,19500255870480 %N A352979 a(n) = Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j} (k*j*i)^3. %C A352979 a(n) is the sum of all products of three cubes of positive integers up to n, i.e., the sum of all products of three elements from the set of cubes {1^3, ..., n^3}. %D A352979 El Haddad, R. (2022). A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199. %H A352979 Roudy El Haddad, <a href="https://arxiv.org/abs/2101.09089">Recurrent Sums and Partition Identities</a>, arXiv:2101.09089 [math.NT], 2021. %H A352979 Roudy El Haddad, <a href="https://doi.org/10.7546/nntdm.2022.28.2.167-199">A generalization of multiple zeta value. Part 1: Recurrent sums</a>. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199. %H A352979 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1). [Typo corrected by _Georg Fischer_, Sep 30 2022] %F A352979 a(n) = n^2 * (n + 1)^2 * (n + 2) * (n + 3) * (35*n^6 + 205*n^5 + 263*n^4 - 221*n^3 - 214*n^2 + 324*n - 112)/13440. %F A352979 a(n) = binomial(n+3,4)*binomial(n+1,2)*(35*n^6 + 205*n^5 + 263*n^4 - 221*n^3 - 214*n^2 + 324*n - 112)/280. %o A352979 (PARI) {a(n) = n^2 * (n + 1)^2 * (n + 2) * (n + 3) * (35*n^6 + 205*n^5 + 263*n^4 - 221*n^3 - 214*n^2 + 324*n - 112)/13440}; %o A352979 (Python) %o A352979 def A352979(n): return n**2*(n*(n*(n*(n*(n*(n*(n*(n*(n*(35*n + 450) + 2293) + 5700) + 6405) + 770) - 3661) - 240) + 2320) + 40) - 672)//13440 # _Chai Wah Wu_, May 14 2022 %Y A352979 Cf. A352980 (for distinct cubes). %Y A352979 Cf. A001297 (for power 1), A351105 (for squares). %Y A352979 Cf. A000578 (cubes), A000537 (sum of first n cubes), A346642 (order 2). %K A352979 nonn,easy %O A352979 0,3 %A A352979 _Roudy El Haddad_, Apr 13 2022