A352989 Composites k such that the k-th triangular number is divisible by the integer log of k.
8, 15, 16, 27, 44, 54, 72, 84, 90, 95, 105, 125, 143, 150, 180, 195, 231, 256, 264, 287, 288, 308, 315, 319, 328, 351, 390, 423, 440, 483, 495, 512, 528, 540, 558, 559, 560, 576, 588, 608, 624, 627, 645, 648, 650, 728, 800, 805, 819, 840, 855, 870, 884, 896, 897, 924, 935, 945, 960, 975, 987
Offset: 1
Keywords
Examples
a(5) = 44 = 2*2*11 is a term because it is composite and A000217(44) = 44*45/2 = 990 is divisible by 2+2+11 = 15.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local t; not isprime(n) and (n*(n+1)/2/add(t[1]*t[2],t=ifactors(n)[2]))::integer end proc: select(filter, [$4..1000]);
-
Mathematica
Select[Range[1000], CompositeQ[#] && Divisible[#*(# + 1)/2, Plus @@ Times @@@ FactorInteger[#]] &] (* Amiram Eldar, Apr 13 2022 *)
Comments