This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352992 #65 Jul 29 2025 14:32:51 %S A352992 1,3,53,1753,753,60753,660753,9660753,99660753,899660753,3899660753, %T A352992 33899660753,233899660753,7233899660753,97233899660753, %U A352992 497233899660753,1497233899660753,31497233899660753,631497233899660753,9631497233899660753,59631497233899660753,559631497233899660753 %N A352992 Smallest positive integer whose cube ends with exactly n 7's. %C A352992 When A225401(k) = 0, i.e. k is a term of A353003, then a(k) > a(k+1); 1st example is for k = 3 with a(3) = 1753 > a(4) = 753; otherwise, a(n) < a(n+1). %C A352992 When n <> k, a(n) coincides with the 'backward concatenation' of A225401(n-1) up to A225401(0), where A225401 is the 10-adic integer x such that x^3 = -7/9 (see table in Example section); when n= k, a(k) must be calculated directly with the definition. %C A352992 Without "exactly" in the name, terms a'(n) should be: 1, 3, 53, 753, 753, 60753, 660753, ... %C A352992 There are similar sequences when cubes end with 1, 3, 8 or 9; but there's no similar sequence for squares, because when a square ends in more than three identical digits, these digits are necessarily 0. %H A352992 Robert Israel, <a href="/A352992/b352992.txt">Table of n, a(n) for n = 0..996</a> %F A352992 When n is not in A353003, a(n) = Sum_{k=0..n-1} A225401(k) * 10^k. %e A352992 a(1) = 3 because 3^3 = 27; %e A352992 a(2) = 53 because 53^2 = 148877; %e A352992 a(3) = 1753 because 1753^3 = 5386984777; %e A352992 a(4) = 753 because 753^2 = 426957777; %e A352992 a(5) = 60753 because 60753^3 = 224234888577777. %e A352992 Table with a(n) and A225401(n-1) %e A352992 --------------------------------------------------------------------------- %e A352992 | | a(n) | a'(n) | A225401(n-1) | concatenation | %e A352992 | n | with "exactly" | without "exactly" | = b(n-1) | b(n-1)...b(0) | %e A352992 --------------------------------------------------------------------------- %e A352992 0 1 1 %e A352992 1 3 3 3 ...3 %e A352992 2 53 53 5 ...53 %e A352992 3 1753 753 7 ...753 %e A352992 4 753 753 0 ...0753 %e A352992 5 60753 60753 6 ...60753 %e A352992 6 660753 660753 6 ...660753 %e A352992 7 9660753 9660753 9 ...9660753 %e A352992 .......................................................................... %e A352992 Also, as A225401(23) = 0, we have from a(21) up to a(25): %e A352992 a(21) = 559631497233899660753; %e A352992 a(22) = 3559631497233899660753; %e A352992 a(23) = 193559631497233899660753, found by _Marius A. Burtea_; %e A352992 a(24) = 93559631497233899660753; %e A352992 a(25) = 2093559631497233899660753. %p A352992 f:= proc(n) local t,x; %p A352992 t:= 7/9*(10^n-1); %p A352992 x:= rhs(op(msolve(x^3=t,10^n))); %p A352992 while x^3 mod 10^(n+1) = 10*t+7 do x:= x + 10^n od; %p A352992 x %p A352992 end proc: %p A352992 f(0):= 1: %p A352992 map(f, [$0..30]); # _Robert Israel_, Jul 29 2025 %o A352992 (Python) %o A352992 def a(n): %o A352992 k, s, target = 1, "1", "7"*n %o A352992 while s.rstrip("7") + target != s: k += 1; s = str(k**3) %o A352992 return k %o A352992 print([a(n) for n in range(8)]) # _Michael S. Branicky_, Apr 14 2022 %Y A352992 Cf. A000578, A017307, A039685, A225401, A353003. %K A352992 nonn,base %O A352992 0,2 %A A352992 _Bernard Schott_, Apr 14 2022 %E A352992 a(8)-a(9) from _Marius A. Burtea_, Apr 14 2022