This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352995 #36 Jul 29 2025 14:25:53 %S A352995 1,7,77,477,6477,46477,446477,5446477,85446477,385446477,4385446477, %T A352995 44385446477,644385446477,8644385446477,38644385446477, %U A352995 138644385446477,5138644385446477,115138644385446477,15138644385446477,5015138644385446477 %N A352995 Smallest positive integer whose cube ends with exactly n 3's. %C A352995 When A225402(k) = 0, i.e., k is a term of A352282, then a(k) > a(k+1); 1st example is for k = 17 with a(17) = 115138644385446477 > a(18) = 15138644385446477; otherwise, a(n) < a(n+1). %C A352995 When n <> k, a(n) coincides with the 'backward concatenation' of A225402(n-1) up to A225402(0), where A225402 is the 10-adic integer x such that x^3 = -1/3 (see table in Example section); when n = k, a(k) must be calculated directly with the definition. %C A352995 Without "exactly" in the name, terms a'(n) should be also: 1, 7, 77, 477, 6477, 46477, 446477, ..., first difference arrives for n = 17. %C A352995 There are similar sequences when cubes end with 1, 7, 8 or 9. %H A352995 Robert Israel, <a href="/A352995/b352995.txt">Table of n, a(n) for n = 0..996</a> %F A352995 When n is not in A352282, a(n) = Sum_{k=0..n-1} A225402(k) * 10^k. %e A352995 a(0) = 1 because 1^3 = 1; %e A352995 a(1) = 7 because 7^3 = 343; %e A352995 a(2) = 77 because 77^3 = 456533; %e A352995 a(3) = 477 because 477^3 = 108531333; %e A352995 ------------------------------------------------------------------------------ %e A352995 | | a(n) | a'(n) | A225402(n-1) | concatenation | %e A352995 | n | with "exactly" | without "exactly" | = b(n-1) | b(n-1)...b(0) | %e A352995 ------------------------------------------------------------------------------ %e A352995 1 7 7 7 ...7 %e A352995 2 77 77 7 ...77 %e A352995 3 477 477 4 ...477 %e A352995 ............................................................................ %e A352995 15 138644385446477 138644385446477 1 ...138644385446477 %e A352995 16 5138644385446477 5138644385446477 5 ...5138644385446477 %e A352995 17 115138644385446477 15138644385446477 1 ...15138644385446477 %e A352995 18 15138644385446477 15138644385446477 0 ...015138644385446477 %e A352995 19 5015138644385446477 5015138644385446477 5 ...5015138644385446477 %e A352995 ------------------------------------------------------------------------------ %p A352995 f:= proc(n) local t,x; %p A352995 t:= 3/9*(10^n-1); %p A352995 x:= rhs(op(msolve(x^3=t,10^n))); %p A352995 while x^3 mod 10^(n+1) = 10*t+3 do x:= x + 10^n od; %p A352995 x %p A352995 end proc: %p A352995 f(0):= 1: %p A352995 map(f, [$0..20]); # _Robert Israel_, Jul 29 2025 %Y A352995 Cf. A225402, A352282, A352992 (similar, with 7). %K A352995 nonn %O A352995 0,2 %A A352995 _Bernard Schott_, Apr 24 2022