This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352996 #21 Apr 24 2022 17:21:45 %S A352996 1,0,2,0,1,0,0,3,6,0,1,0,6,0,0,0,3,0,3,1,6,0,3,5,6,0,10,0,5,0,8,1,6,6, %T A352996 6,0,6,12,6,0,3,0,0,1,6,0,10,7,3,6,1,0,0,4,10,3,6,0,6,0,6,1,4,3,3,0, %U A352996 15,23,7,0,0,0,6,3,5,15,3,0,3,9,6,0,0,3,6,20,6,0,0,6,12,19,6,0,2,0 %N A352996 a(n) = n*(n+1)/2 mod (sum (with multiplicity) of prime factors of n). %C A352996 If n is an odd prime, a(n) = 0. %C A352996 If n is prime, a(n^2) = n. %H A352996 Robert Israel, <a href="/A352996/b352996.txt">Table of n, a(n) for n = 2..10000</a> %F A352996 a(n) = A000217(n) mod A001414(n). %e A352996 For n = 6, A000217(6) = 6*7/2 = 21 and A001414(6) = 2+3 = 5, so a(6) = 21 mod 5 = 1. %p A352996 seq((n*(n+1)/2) mod add(t[1]*t[2],t=ifactors(n)[2]), n=2..100); %t A352996 a[n_] := Mod[n*(n + 1)/2, Plus @@ Times @@@ FactorInteger[n]]; Array[a, 100, 2] (* _Amiram Eldar_, Apr 15 2022 *) %o A352996 (Python) %o A352996 from sympy import factorint %o A352996 def a(n): return (n*(n+1)//2)%sum(p*e for p, e in factorint(n).items()) %o A352996 print([a(n) for n in range(2, 98)]) # _Michael S. Branicky_, Apr 24 2022 %Y A352996 Cf. A352989, A352990, A352997. %K A352996 nonn %O A352996 2,3 %A A352996 _J. M. Bergot_ and _Robert Israel_, Apr 14 2022