cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A352997 Numbers k such that A352996(k) is prime.

Original entry on oeis.org

4, 9, 18, 20, 24, 25, 30, 42, 49, 50, 57, 65, 66, 69, 70, 75, 76, 78, 80, 85, 93, 96, 98, 99, 102, 104, 110, 112, 114, 121, 129, 133, 141, 145, 152, 153, 169, 177, 186, 189, 190, 192, 198, 213, 217, 228, 238, 242, 249, 252, 258, 261, 266, 272, 273, 275, 282, 286, 289, 290, 292, 294, 297, 305, 309
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 14 2022

Keywords

Comments

Numbers k such that the k-th triangular number mod the sum (with multiplicity) of prime factors of k is prime.
Contains p^2 for prime p.

Examples

			a(3) = 18 is a term because A352996(18) = A000217(18) mod A001414(18) = 171 mod 8 = 3 is prime.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t; isprime((n*(n+1)/2) mod add(t[1]*t[2],t=ifactors(n)[2])) end proc:
    select(filter, [$2..500]);
  • Mathematica
    Select[Range[300], PrimeQ[Mod[#*(# + 1)/2, Plus @@ Times @@@ FactorInteger[#]]] &] (* Amiram Eldar, Apr 14 2022 *)

A353001 Numbers k such that the k-th triangular number mod the sum (with multiplicity) of prime factors of k, and the k-th triangular number mod the sum of divisors of k, are both prime.

Original entry on oeis.org

4, 57, 70, 93, 129, 217, 322, 381, 417, 453, 513, 565, 597, 646, 682, 781, 813, 921, 925, 1057, 1081, 1102, 1137, 1165, 1197, 1261, 1317, 1393, 1405, 1558, 1582, 1641, 1750, 1798, 1846, 1857, 1918, 1929, 2073, 2101, 2110, 2173, 2181, 2305, 2329, 2361, 2482, 2506, 2569, 2577, 2626, 2649, 2653
Offset: 1

Views

Author

Robert Israel, Apr 14 2022

Keywords

Comments

Numbers k such that A232324(k) and A352996(k) are prime.

Examples

			a(3) = 70 is a term because 70*71/2 = 2485, A000217(70) = 144, A001414(70) = 14, and both 2485 mod 144 = 37 and 2485 mod 14 = 7 are prime.
		

Crossrefs

Intersection of A352908 and A352997.

Programs

  • Maple
    filter:= proc(n) local a,b,c,t;
      a:= n*(n+1)/2;
      b:= add(t[1]*t[2],t=ifactors(n)[2]);
      if not isprime(a mod b) then return false fi;
      c:= numtheory:-sigma(n);
      isprime(a mod c)
    end proc:
    select(filter, [$2..3000]);
  • Mathematica
    Select[Range[3000], And @@ PrimeQ[Mod[#*(# + 1)/2, {DivisorSigma[1, #], Plus @@ Times @@@ FactorInteger[#]}]] &] (* Amiram Eldar, Apr 15 2022 *)

A353002 Numbers k such that the k-th triangular number mod the sum (with multiplicity) of prime factors of k, and the k-th triangular number mod the sum of divisors of k, are the same prime.

Original entry on oeis.org

93, 2653, 30433, 1922113, 15421122, 28776673, 240409057, 611393953, 2713190397, 5413336381
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 15 2022

Keywords

Examples

			a(1) = 93 is a term because 93*94/2 = 4371, A000217(93) = 128, A001414(93) = 34, and 4371 mod 128 = 4371 mod 34 = 19, which is prime.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local a,b,c,t;
      a:= n*(n+1)/2;
      b:= add(t[1]*t[2],t=ifactors(n)[2]);
      t:= a mod b; if not isprime(t) then return false fi;
      c:= numtheory:-sigma(n);
      a mod c = t
    end proc:
    select(filter, [$2..2*10^7]);
  • Mathematica
    Select[Range[2*10^6], (r = Mod[#*(# + 1)/2, DivisorSigma[1, #]]) == Mod[#*(# + 1)/2, Plus @@ Times @@@ FactorInteger[#]] && PrimeQ[r] &] (* Amiram Eldar, Apr 15 2022 *)

Extensions

a(8) from Amiram Eldar, Apr 15 2022
a(9)-a(10) from Daniel Suteu, May 12 2022
Showing 1-3 of 3 results.