This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353005 #11 Apr 15 2022 11:21:49 %S A353005 4,0,6,1,4,8,0,0,5,0,0,1,2,4,7,2,2,8,8,6,8,9,5,8,6,0,3,0,5,9,0,4,1,9, %T A353005 4,5,5,6,2,9,4,0,1,9,3,9,3,6,8,7,2,4,3,2,0,6,7,0,5,4,4,9,3,6,4,7,6,6, %U A353005 4,1,6,6,7,7,4,7,5,2,7,9,1,1,8,5,6,7,8,7,3,6,0,9,3,5,9,6,5,7,3,1,9,0,9,1,2,0 %N A353005 Decimal expansion of the root of the equation Sum_{k>0} x^k/(1-x^k) = 1. %H A353005 Sylvie Corteel and Paweł Hitczenko, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Hitczenko/hitczenko4.html">Generalizations of Carlitz Compositions</a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.8., p. 7. %F A353005 Root of the equation Sum_{k>0} A000005(k)*x^k = 1. %F A353005 Equals lim_{n->infinity} 1/A129921(n)^(1/n). %e A353005 0.40614800500124722886895860305904194556294019393687243206705449364766416677475... %t A353005 RealDigits[x/.FindRoot[QPolyGamma[0, 1, x]==Log[x/(1-x)], {x, 1/2}, WorkingPrecision->110]][[1]] %Y A353005 Cf. A129921. %K A353005 nonn,cons %O A353005 0,1 %A A353005 _Vaclav Kotesovec_, Apr 15 2022