This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353007 #27 Aug 01 2024 01:33:20 %S A353007 0,2,4,6,8,11,20,24,26,28,33,40,42,46,48,55,60,62,64,68,77,80,82,84, %T A353007 86,99,101,110,112,114,116,118,121,141,161,181,204,206,208,211,222, %U A353007 233,240,246,248,255,260,264,268,277,280,284,286,299,303,323,330,332,334 %N A353007 Nonnegative integers in which any odd digit, if present, occurs an even number of times, and any even digit, if present, occurs an odd number of times. %C A353007 Like the converse of A333369. %H A353007 Robert Israel, <a href="/A353007/b353007.txt">Table of n, a(n) for n = 1..10000</a> %e A353007 181 is a 3-digit term because it has two 1's and one 8. %p A353007 filter:= proc(n) local L; %p A353007 L:= map(rhs-lhs,Statistics:-Tally(convert(n,base,10))); %p A353007 andmap(type,L,odd) %p A353007 end proc: %p A353007 select(filter, [$0..1000]); # _Robert Israel_, Jul 31 2024 %t A353007 q[n_] := AllTrue[Tally @ IntegerDigits[n], OddQ[Plus @@ #] &]; Select[Range[0, 300], q] (* _Amiram Eldar_, Apr 15 2022 *) %o A353007 (PARI) isok(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 == (s[i] % 2), return (0))); return (1); \\ _Michel Marcus_, Apr 15 2022 %o A353007 (Python) %o A353007 def ok(n): s = str(n); return all(s.count(d)%2 != int(d)%2 for d in set(s)) %o A353007 print([k for k in range(335) if ok(k)]) # _Michael S. Branicky_, Apr 15 2022 %Y A353007 Cf. A333369. %K A353007 nonn,base %O A353007 1,2 %A A353007 _Bernard Schott_, Apr 15 2022