cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353019 Heptagonal numbers which are products of five distinct primes.

Original entry on oeis.org

32890, 48790, 102718, 167314, 236698, 239785, 260338, 330694, 360430, 389470, 455182, 749938, 884170, 932386, 960070, 1007110, 1104565, 1334806, 1397638, 1423930, 1488802, 1515934, 1610818, 1679770, 1721005, 1741810, 1952314, 2046205, 2312167, 2365363, 2473570, 2503501, 2513518, 2558842
Offset: 1

Views

Author

Massimo Kofler, Apr 17 2022

Keywords

Comments

A squarefree subsequence of heptagonal numbers.

Examples

			32890 = 2*5*11*13*23 = 115(5*115-3)/2.
48790 = 2*5*7*17*41 = 140(5*140-3)/2.
102718 = 2*7*11*23*29 = 203(5*203-3)/2.
167314 = 2*7*17*19*37 = 259(5*259-3)/2.
		

Crossrefs

Intersection of A000566 and A046387.

Programs

  • Maple
    f:= proc(n) local k, F;
      k:= n*(5*n-3)/2;
      F:= ifactors(k)[2];
      if F[..,2] = [1,1,1,1,1] then k fi
    end proc:
    map(f, [$1..2000]); # Robert Israel, Jul 29 2025
  • Mathematica
    Select[Table[n*(5*n - 3)/2, {n, 1, 1000}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1, 1} &] (* Amiram Eldar, Apr 17 2022 *)
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen():
        for h in (n*(5*n-3)//2 for n in count(1)):
            f = factorint(h, multiple=True)
            if len(f) == len(set(f)) == 5: yield h
    print(list(islice(agen(), 34))) # Michael S. Branicky, May 28 2022