A353019 Heptagonal numbers which are products of five distinct primes.
32890, 48790, 102718, 167314, 236698, 239785, 260338, 330694, 360430, 389470, 455182, 749938, 884170, 932386, 960070, 1007110, 1104565, 1334806, 1397638, 1423930, 1488802, 1515934, 1610818, 1679770, 1721005, 1741810, 1952314, 2046205, 2312167, 2365363, 2473570, 2503501, 2513518, 2558842
Offset: 1
Keywords
Examples
32890 = 2*5*11*13*23 = 115(5*115-3)/2. 48790 = 2*5*7*17*41 = 140(5*140-3)/2. 102718 = 2*7*11*23*29 = 203(5*203-3)/2. 167314 = 2*7*17*19*37 = 259(5*259-3)/2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k, F; k:= n*(5*n-3)/2; F:= ifactors(k)[2]; if F[..,2] = [1,1,1,1,1] then k fi end proc: map(f, [$1..2000]); # Robert Israel, Jul 29 2025
-
Mathematica
Select[Table[n*(5*n - 3)/2, {n, 1, 1000}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1, 1} &] (* Amiram Eldar, Apr 17 2022 *)
-
Python
from sympy import factorint from itertools import count, islice def agen(): for h in (n*(5*n-3)//2 for n in count(1)): f = factorint(h, multiple=True) if len(f) == len(set(f)) == 5: yield h print(list(islice(agen(), 34))) # Michael S. Branicky, May 28 2022
Comments