cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353020 Every term is the absolute difference of a prime and a nonprime that is also the sum of their indices.

This page as a plain text file.
%I A353020 #61 Jul 29 2025 19:08:24
%S A353020 4,7,9,14,15,16,17,25,26,27,28,29,35,43,44,45,46,47,55,56,57,58,64,71,
%T A353020 73,74,75,76,77,78,79,83,85,86,87,96,99,107,109,110,111,112,113,117,
%U A353020 123,125,133,139,140,141,142,143,148,151,152,153,154,155,156,157,158
%N A353020 Every term is the absolute difference of a prime and a nonprime that is also the sum of their indices.
%C A353020 More than one pair of a prime and a nonprime may correspond to some of the terms.
%C A353020 Sequence A352707 is read by ascending antidiagonals from array T(n,k). Present sequence is those differences T(n,k) which are on their own antidiagonal number n + k.
%C A353020 .
%C A353020 Array T(n,k) = abs(prime(n)-nonprime(k))
%C A353020      n\k|  1  4  6  8  9 ...
%C A353020      -----------------------
%C A353020       2 |  1  2  4  6  7 ...
%C A353020       3 |  2  1  3  5  6 ...
%C A353020       5 |  4  1  1  3  4 ...
%C A353020       7 |  6  3  1  1  2 ...
%C A353020      11 | 10  7  5  3  2 ...
%C A353020      13 | 12  9  7  5  4 ...
%C A353020      17 | 16 13 11  9  8 ...
%C A353020      19 | 18 15 13 11 10 ...
%C A353020      23 | 22 19 17 15 14 ...
%C A353020       . |  .  .  .  .  .
%H A353020 Robert Israel, <a href="/A353020/b353020.txt">Table of n, a(n) for n = 1..3000</a>
%F A353020 Sums x + y for which x + y = abs(prime(x) - nonprime(y)), for some x and y.
%e A353020 7 is a term because the 5th prime 11 minus the 2nd nonprime 4 equals 7 and that is also 5 + 2.
%e A353020 9 is a term because the 2nd prime 3 minus the 7th nonprime 12 equals -9 whose absolute value 9 is also 2 + 7.
%e A353020 4 is a term because the 3rd prime 5 minus the 1st nonprime 1 equals 4 that is also 3 + 1. The absolute value of the 1st prime 2 minus the 3rd nonprime 6 also equals 4 that is 1 + 3, so this pair, too, makes 4 a term of this sequence.
%p A353020 M:= 1000:
%p A353020 P:= NULL: C:= NULL: np:= 0: nc:= 0:
%p A353020 for x from 1 while np < M do
%p A353020   if isprime(x) then
%p A353020     np:= np+1; P:= P,x
%p A353020   elif nc < M then
%p A353020     nc:= nc+1; C:= C,x
%p A353020   fi
%p A353020 od:
%p A353020 filter:= proc(x) local i;
%p A353020   ormap(i -> abs(P[i] - C[x-i]) = x, [$1..x-1]);
%p A353020 end proc:
%p A353020 select(filter, [$1..M]); # _Robert Israel_, Jul 29 2025
%Y A353020 Cf. A000040, A018252, A352707 (table T).
%K A353020 nonn
%O A353020 1,1
%A A353020 _Tamas Sandor Nagy_, Apr 17 2022
%E A353020 More terms from _Hugo Pfoertner_, Apr 17 2022