A354021 a(n) = Sum_{1 <= i < j < k < m <= n} (m*k*j*i)^2.
0, 0, 0, 0, 576, 21076, 296296, 2475473, 14739153, 68943381, 268880381, 909450751, 2742417535, 7522650135, 19058554515, 45123156390, 100771975590, 213877057086, 434042943246, 846542846578, 1593528150578
Offset: 0
Links
- Winston de Greef, Table of n, a(n) for n = 0..10000
- Roudy El Haddad, Multiple Sums and Partition Identities, arXiv:2102.00821 [math.CO], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 2: Multiple sums. Notes on Number Theory and Discrete Mathematics, 28(2) 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Programs
-
PARI
{a(n) = n*(n + 1)*(n - 1)*(n - 2)*(n - 3)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(2*n - 5)*(5*n + 7)*(35*n^2 + 98*n + 72)/5443200};
Formula
a(n) = Sum_{m=4..n} Sum_{k=3..m-1} Sum_{j=2..k-1} Sum_{i=1..j-1} (m*k*j*i)^2.
a(n) = n*(n+1)*(n-1)*(n-2)*(n-3)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(2*n - 5)*(5*n + 7)*(35*n^2 + 98*n + 72)/5443200.
a(n) = binomial(2*n+2,9)*(5*n + 7)*(35*n^2 + 98*n + 72)/(5!*4).
Comments