This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353023 #39 Oct 07 2024 14:17:26 %S A353023 545,27272,1818181,636363636,90909090909,181818181818,272727272727, %T A353023 363636363636,454545454545,545454545454,636363636363,727272727272, %U A353023 818181818181,909090909090,363636363636363,81818181818181818,7272727272727272727,454545454545454545454 %N A353023 Positive integers k with the property that they cannot be converted to a multiple of 11 by changing at most a single decimal digit. %C A353023 This sequence was inspired by a puzzle from David K. Butler. %H A353023 Ben Weiss, <a href="https://blog.benweiss.com/2022/05/16/multiples-of-11/">Multiples of 11</a> %F A353023 a(n) = a(n - 18) * 10^22 + (a(n - 18) mod 100) * 101010101010101010101. %o A353023 (Objective-C) %o A353023 int main(int argc, const char * argv[]) { %o A353023 // Search positive integers for solutions, up to 10^20. %o A353023 for (int length = 1; length < 20; ++length) { %o A353023 for (int a = 0; a <= 9; ++a) { %o A353023 int b = 9 - a; %o A353023 // Test number abababab... with length 'length' %o A353023 int a_mod_11 = (a * ((length + 1) / 2)) % 11; %o A353023 int b_mod_11 = (b * ((length ) / 2)) % 11; %o A353023 int a_add = (b_mod_11 - a_mod_11 + 11) % 11; %o A353023 if (a + a_add == 10) { %o A353023 uint64_t num = 0; %o A353023 uint64_t dec = 1; %o A353023 for (int d = 0; d < length; ++d) { %o A353023 num += ((d & 1) ? b : a) * dec; %o A353023 dec *= 10; %o A353023 } %o A353023 NSLog(@"Found solution: %llu", num); %o A353023 } %o A353023 } %o A353023 } %o A353023 return 0; %o A353023 } %Y A353023 Cf. A008593 (multiples of 11). %K A353023 base,nonn %O A353023 1,1 %A A353023 _Ben Weiss_, May 15 2022