cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353027 Tetrahedral (or triangular pyramidal) numbers which are products of four distinct primes.

Original entry on oeis.org

1330, 6545, 16215, 23426, 35990, 39711, 47905, 52394, 57155, 79079, 105995, 138415, 198485, 221815, 246905, 366145, 477191, 762355, 1004731, 1216865, 1293699, 1373701, 1587986, 1633355, 1726669, 1823471, 1975354, 2246839, 2862209, 2997411, 3208094, 3580779, 4149466, 4590551
Offset: 1

Views

Author

Massimo Kofler, Apr 18 2022

Keywords

Comments

A squarefree subsequence of tetrahedral numbers.

Examples

			   1330 = 19*20*21/6 = 2 *  5 *  7 * 19;
   6545 = 33*34*35/6 = 5 *  7 * 11 * 17;
  16215 = 45*46*47/6 = 3 *  5 * 23 * 47;
  23426 = 51*52*53/6 = 2 * 13 * 17 * 53.
		

Crossrefs

Intersection of A000292 and A046386.
Subsequence of A070755.

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n,easy)[2];
      F[..,2] = [1,1,1,1]
    end proc:
    select(filter, [seq(n*(n+1)*(n+2)/6,n=1..1000)]); # Robert Israel, Apr 18 2023
  • Mathematica
    Select[Table[n*(n + 1)*(n + 2)/6, {n, 1, 300}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1} &] (* Amiram Eldar, Apr 18 2022 *)
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen():
        for t in (n*(n+1)*(n+2)//6 for n in count(1)):
            f = factorint(t, multiple=True)
            if len(f) == len(set(f)) == 4: yield t
    print(list(islice(agen(), 34))) # Michael S. Branicky, May 28 2022