A353027 Tetrahedral (or triangular pyramidal) numbers which are products of four distinct primes.
1330, 6545, 16215, 23426, 35990, 39711, 47905, 52394, 57155, 79079, 105995, 138415, 198485, 221815, 246905, 366145, 477191, 762355, 1004731, 1216865, 1293699, 1373701, 1587986, 1633355, 1726669, 1823471, 1975354, 2246839, 2862209, 2997411, 3208094, 3580779, 4149466, 4590551
Offset: 1
Keywords
Examples
1330 = 19*20*21/6 = 2 * 5 * 7 * 19; 6545 = 33*34*35/6 = 5 * 7 * 11 * 17; 16215 = 45*46*47/6 = 3 * 5 * 23 * 47; 23426 = 51*52*53/6 = 2 * 13 * 17 * 53.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(n,easy)[2]; F[..,2] = [1,1,1,1] end proc: select(filter, [seq(n*(n+1)*(n+2)/6,n=1..1000)]); # Robert Israel, Apr 18 2023
-
Mathematica
Select[Table[n*(n + 1)*(n + 2)/6, {n, 1, 300}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1} &] (* Amiram Eldar, Apr 18 2022 *)
-
Python
from sympy import factorint from itertools import count, islice def agen(): for t in (n*(n+1)*(n+2)//6 for n in count(1)): f = factorint(t, multiple=True) if len(f) == len(set(f)) == 4: yield t print(list(islice(agen(), 34))) # Michael S. Branicky, May 28 2022
Comments