cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353031 Emirps p such that both p and its digit reversal can be written as q*r+q+r where q and r are emirps.

Original entry on oeis.org

134999, 999431, 1383947, 1903103, 3013091, 3626339, 7282487, 7493831, 7842827, 9336263, 9366839, 9386639, 9562499, 9942659, 11230199, 11370743, 11394431, 11650571, 11769839, 11884079, 13182623, 13413599, 13449311, 13611023, 13683179, 13881323, 15123527, 15788771, 15925391, 15934463, 17505611
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 18 2022

Keywords

Comments

Members of A352249 whose digit reversals are also in A352249.

Examples

			a(6) = 3626339 is a term because 3626339 = 37*95429 + 37 + 95429, its digit reversal 9336263 = 97*95267 + 97 + 95267, and 3626339, 37, 95429, 97 and 95267 are all emirps.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L, i; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end proc:
    isemirp:= proc(p) local r;
       if not isprime(p) then return false fi;
       r:= revdigs(p);
       r <> p and isprime(r)
    end proc:
    filter:= proc(p) local q,t,flag;
      if not isprime(p) then return false fi;
      q:= revdigs(p);
      if q=p or not isprime(q) then return false fi;
      flag:= false;
    for t in select(`<`, numtheory:-divisors(p+1),floor(sqrt(p+1))) do
      if isemirp(t-1) and isemirp((p+1)/t-1) then flag:= true; break fi
    od;
    if not flag then return false fi;
    for t in select(`<`, numtheory:-divisors(q+1),floor(sqrt(q+1))) do
         if isemirp(t-1) and isemirp((q+1)/t-1) then return true fi
    od;
    false
    end proc:
    p:= 2: R:= NULL: count:= 0:
    while count < 40 do
      p:= nextprime(p);
    d:=  ilog10(p);
    p1:= floor(p/10^d);
      if p1=2 then p:= nextprime(3*10^d)
      elif member(p1,{4,5,6}) then p:= nextprime(7*10^d)
      elif p1=8 then p:= nextprime(9*10^d)
    fi;
      if filter(p) then R:= R, p; count:= count+1 fi;
    od:
    R;