A353031 Emirps p such that both p and its digit reversal can be written as q*r+q+r where q and r are emirps.
134999, 999431, 1383947, 1903103, 3013091, 3626339, 7282487, 7493831, 7842827, 9336263, 9366839, 9386639, 9562499, 9942659, 11230199, 11370743, 11394431, 11650571, 11769839, 11884079, 13182623, 13413599, 13449311, 13611023, 13683179, 13881323, 15123527, 15788771, 15925391, 15934463, 17505611
Offset: 1
Examples
a(6) = 3626339 is a term because 3626339 = 37*95429 + 37 + 95429, its digit reversal 9336263 = 97*95267 + 97 + 95267, and 3626339, 37, 95429, 97 and 95267 are all emirps.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
revdigs:= proc(n) local L, i; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end proc: isemirp:= proc(p) local r; if not isprime(p) then return false fi; r:= revdigs(p); r <> p and isprime(r) end proc: filter:= proc(p) local q,t,flag; if not isprime(p) then return false fi; q:= revdigs(p); if q=p or not isprime(q) then return false fi; flag:= false; for t in select(`<`, numtheory:-divisors(p+1),floor(sqrt(p+1))) do if isemirp(t-1) and isemirp((p+1)/t-1) then flag:= true; break fi od; if not flag then return false fi; for t in select(`<`, numtheory:-divisors(q+1),floor(sqrt(q+1))) do if isemirp(t-1) and isemirp((q+1)/t-1) then return true fi od; false end proc: p:= 2: R:= NULL: count:= 0: while count < 40 do p:= nextprime(p); d:= ilog10(p); p1:= floor(p/10^d); if p1=2 then p:= nextprime(3*10^d) elif member(p1,{4,5,6}) then p:= nextprime(7*10^d) elif p1=8 then p:= nextprime(9*10^d) fi; if filter(p) then R:= R, p; count:= count+1 fi; od: R;
Comments