cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353035 a(n) = A119435(2^n).

This page as a plain text file.
%I A353035 #20 Jun 20 2025 18:48:57
%S A353035 1,2,3,4,6,8,11,15,20,27,36,48,64,85,116,153,208,273,366,493,649,888,
%T A353035 1161,1579,2092,2784,3783,4946,6772,8875,11977,16065,21193,28979,
%U A353035 37823,51633,68117,91045,123377,161622,221441,289493,392259,523328,692771,945393
%N A353035 a(n) = A119435(2^n).
%C A353035 Local minima of A119435.
%C A353035 Let U(n,j) be the j-th smallest missing number in A119435(1..n-1). Example: for A119435(1..11), U(12,j) begins {6, 8, 10, 11, 14, ...}. Therefore we may alternatively define A119435(n) = U(n, A030101(n)).
%C A353035 Theorem: A119435(2^k) represents a local minimum. Proof: Observe that A030101(2^k) = 1. 2^k expressed in binary is 1 followed by zeros. When we reverse this number, the leading zeros are trivial and we read the number 1 in the 2^0 place. Therefore we select U(2^k, 1), which is the smallest missing number in A119435(1..n-1). Hence, a(n) = A119435(2^n).
%C A353035 Also positions of 2^n in A119436.
%H A353035 Rémy Sigrist, <a href="/A353035/a353035.gp.txt">PARI program</a>
%t A353035 a = {1}; nn = 2^14; Do[AppendTo[a, Complement[Range[i + 2 nn], a][[IntegerReverse[i, 2]] ]], {i, 2, nn}]; Array[a[[2^#]] &, Floor@ Log2@ Length@ a - 1, 0]
%o A353035 (PARI) \\ See Links section.
%Y A353035 Cf. A030101, A119435, A119436.
%K A353035 nonn,base
%O A353035 0,2
%A A353035 _Michael De Vlieger_, Apr 18 2022
%E A353035 More terms from _Rémy Sigrist_, Apr 19 2022