This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353047 #27 Jun 17 2022 15:55:17 %S A353047 12,108,600,2664,10404,37476,127920,420768,1348476,4242204,13169160, %T A353047 40490712,123635028,375623892,1137095520,3433306896,10347106860, %U A353047 31141984140,93639862200,281372571720,845074016772,2537235316548,7615933808400,22856659795584,68588501433564 %N A353047 Number of length n words on alphabet {0,1,2} that contain each of the subwords 01, 02, 10, 12, 20, and 21 as (not necessarily contiguous) subwords. %C A353047 Let A be an alphabet containing m letters. Let S be the set of m^2-m ordered two-tuples of distinct letters in A. The generating function for the number of length n words on A that contain each two-tuple in S as a (not necessarily contiguous) subword is m*(m-1)!^2*x^(2*m-1)/((1-m*x)*Product_{k=1..m-1} (1-k*x)^2). %C A353047 Appears to equal 12 times A222993, except that sequence only has a conjectured formula. - _N. J. A. Sloane_, Jun 17 2022 %H A353047 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-31,51,-40,12). %F A353047 G.f.: (12*x^5)/((1 - 2*x)^2*(1 - x)^2*(1 - 3*x)). %e A353047 a(5) = 12 because we have: {0, 1, 2, 0, 1}, {0, 1, 2, 1, 0}, {0, 2, 1, 0, 2}, {0, 2, 1, 2, 0}, {1, 0, 2, 0, 1}, {1, 0, 2, 1, 0}, {1, 2, 0, 1, 2}, {1, 2, 0, 2, 1}, {2, 0, 1, 0, 2}, {2, 0, 1, 2, 0}, {2, 1, 0, 1, 2}, {2, 1, 0, 2, 1}. %t A353047 nn = 15; vertices = Level[Outer[ List, {a, b, c}, {d, e, f}, {h, i, j}, {k, l, m}, {n, o, p}, {q, r, s}], {6}]; x = {a -> b, d -> e, i -> j, o -> p}; y = {b -> c, h -> i, k -> l, r -> s}; z = {e -> f, l -> m, n -> o, q -> r}; replacementlist = Table[vertices[[kk]] -> kk, {kk, 1, 729}]; G= Normal[SparseArray[Flatten[Table[Normal[Merge[ Map[{mm, vertices[[mm]] /. # /. replacementlist} -> 1 &, {x, y, z}], Total]], {mm, 1, 729}]]]]; Iwg = %t A353047 Inverse[IdentityMatrix[729] - w G]; CoefficientList[ Series[Iwg[[1, 729]], {w, 0, nn}], w] %Y A353047 Cf. A058809, A222993, A005803 (binary words). %K A353047 nonn,easy %O A353047 5,1 %A A353047 _Geoffrey Critzer_, Apr 19 2022