This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353055 #56 Dec 26 2024 20:29:02 %S A353055 2,4,7,10,19,47,58,73,109,113,1109,1123,1129,1307,1321,1327,1418,1419, %T A353055 1420,1421,1422,5379,5380,7449,7450,10343,11676,11761,11762,11763, %U A353055 11764,11765,11766,11767,11768,11769,11770,11771,11772,11773,11774,11775,11776,19360,19361,19362,19363,19364,19365,19366,19367,19368,19369,19370,19371,19372 %N A353055 Successive records of function f(x) = log(abs(pi(x) - R(x)))/log(x) where pi(x) is the number of primes <= x and R(x) is Riemann's prime counting function. %C A353055 Two possibilities: %C A353055 (1) this sequence is finite; %C A353055 (2) this sequence is infinite. %C A353055 In case (1) there exists a maximal integer x_max such that J = f(x_max) = log(abs(pi(x_max) - R(x_max)))/log(x_max). %C A353055 In case (2) there exists a real constant J such that lim_{x->oo} f(x) = J. %C A353055 Then for every positive integer x, abs((R(x) - pi(x))/x^J) <= 1. %C A353055 According to actual computations biggest x = 1090696 with log(-85020 + R(1090696))/log(1090696) = 0.27835121240340474... and no more new terms up to x 3000000. Follow this: %C A353055 0.27835121240340474... <= J. %C A353055 J < 1/2 = limit((log(x) - 2*log((8*Pi)/log(x)))/(2*log(x)), x -> infinity) proof follow Lowell Schoenfeld 1976 proof on upper limit of Chebyshev function psi(x). %C A353055 Constant J can be used to measure best proved upper limits of asymptotical behavior of function pi(x) when x->infinity. If J is smaller upper bound is better. %H A353055 Lowell Schoenfeld, <a href="https://doi.org/10.1090/S0025-5718-1976-0457374-X">Sharper Bounds for the Chebyshev Functions theta(x) and psi(x). II</a>, Mathematics of Computation Vol. 30, No. 134 (Apr., 1976), pp. 337-360. %e A353055 x f(x) comment %e A353055 1 -infinity a(1) %e A353055 2 -0.8862754573970588 a(2) %e A353055 3 -4.883591467412115 removed because f(3) < f(2) %e A353055 4 -0.614424415865155 a(3) %e A353055 5 -1.0695141714266385 removed because f(5) < f(4) %e A353055 ... ... %t A353055 gg = {1}; imax = -1000; Do[ %t A353055 kk = Log[Abs[PrimePi[x] - RiemannR[x]]]/Log[x]; %t A353055 If[kk > imax, AppendTo[gg, x]; imax = kk], {x, 2, 20000}]; gg %Y A353055 Cf. A057793, A057794, A215663, A216709, A226473. %K A353055 nonn %O A353055 1,1 %A A353055 _Artur Jasinski_, Apr 20 2022