This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353059 #16 May 07 2022 10:27:24 %S A353059 143,187,341,351,451,671,781,1023,1024,1057,1207,1243,1324,1352,1372, %T A353059 1375,1379,1703,1982,2139,2176,2189,2317,2321,2510,2519,2816,3051, %U A353059 3125,3159,3375,3421,3641,3861,4232,5102,5210,6182,6272,7819,8197,8921,9251,9317,9481,9531 %N A353059 Integers k such that the prime factorization of k uses digits from a proper subset of the digits of k. %C A353059 All numbers in this sequence are composite. %e A353059 143 = 11^1 * 13^1: the number itself uses digits 1, 3, and 4, while the prime factorization uses the subset of digits: 1 and 3. Thus, 143 is in this sequence. %e A353059 25 = 5^2. Both the number and the prime factorization use the same set of digits. Thus, 25 is not in this sequence. %t A353059 Select[Range[10000], SubsetQ[Union[IntegerDigits[#]], Union[Flatten[IntegerDigits[FactorInteger[#]]]]] && Length[Union[IntegerDigits[#]]] > Length[Union[Flatten[IntegerDigits[FactorInteger[#]]]]] &] %o A353059 (Python) %o A353059 from sympy import factorint %o A353059 def ok(n): return set("".join(str(p)+str(e) for p, e in factorint(n).items())) < set(str(n)) %o A353059 print([k for k in range(2, 9999) if ok(k)]) # _Michael S. Branicky_, Apr 20 2022 %Y A353059 Cf. A002808, A025283, A074211. %K A353059 nonn,base %O A353059 1,1 %A A353059 _Tanya Khovanova_, Apr 20 2022