cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353062 Non-prime-powers k such that sigma(k^2) is divisible by d(k^2), where d = A000005, sigma = A000203; non-prime-powers k such that k^2 is in A003601.

Original entry on oeis.org

1, 91, 133, 217, 247, 259, 296, 301, 403, 427, 469, 481, 511, 536, 553, 559, 589, 632, 679, 703, 721, 763, 793, 817, 847, 871, 872, 889, 949, 973, 999, 1027, 1057, 1099, 1141, 1147, 1159, 1208, 1261, 1267, 1273, 1304, 1333, 1339, 1351, 1387, 1393, 1417, 1477
Offset: 1

Views

Author

Jianing Song, Apr 20 2022

Keywords

Comments

Here prime powers means the numbers in A246655.
For p prime, p^(k-1) is a term in A003601 if and only if (p^k-1)/(p-1) is divisible by k. So this sequence is (A107924 U A107925) \ {p^((k-1)/2): p prime, k odd, k | (p^k-1)/(p-1)}.
It is standard that k does not divide 2^k-1 for k > 1, so no term > 1 in A003601 can be a power of 2, hence A107924 is a subsequence.
Since a,b in A003601 (resp. A107924 U A107925) and gcd(a,b) = 1 implies that a*b is in A003601 (resp. A107924 U A107925), this sequence is infinite. For example, all numbers of the form (p_1)*(p_2)*...*(p_k) are here, where p_i's are distinct primes congruent to 1 modulo 3, k >= 2.

Examples

			91 is a term since sigma(91^2) = 10431 is divisible by d(91^2) = 9.
296 is a term since sigma(296^2) = 178689 is divisible by d(296^2) = 21. 296 is the smallest term that is not a product of coprime numbers > 1 in A107924 U A107925.
999 is a term since sigma(999^2) = 1537851 is divisible by d(999^2) = 21. 999 is the smallest odd term that is not a product of coprime numbers > 1 in A107924 U A107925.
		

Crossrefs

Equals (A107924 U A107925) \ A246655. The even terms are listed in A107924.

Programs

  • Mathematica
    Select[Range[1500], !PrimePowerQ[#] && Divisible @@ DivisorSigma[{1, 0}, #^2] &] (* Amiram Eldar, Jul 19 2024 *)
  • PARI
    isA353062(n) = sigma(n^2)%numdiv(n^2)==0 && !isprimepower(n)