cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353066 Numbers whose set of divisors contains every digit at least three times.

This page as a plain text file.
%I A353066 #28 Jul 12 2022 21:30:46
%S A353066 1140,1890,2280,2340,2610,2660,2700,2808,2880,2940,2970,3420,3480,
%T A353066 3510,3540,3600,3654,3672,3780,3870,3920,3952,3990,4032,4140,4320,
%U A353066 4368,4380,4410,4560,4590,4680,4740,4760,4770,4860,4896,4940,4950,5130,5220,5320,5400,5454
%N A353066 Numbers whose set of divisors contains every digit at least three times.
%C A353066 Every multiple of a term is also a term.
%H A353066 David A. Corneth, <a href="/A353066/b353066.txt">Table of n, a(n) for n = 1..10000</a>
%e A353066 The divisors of 1140 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 19, 20, 30, 38, 57, 60, 76, 95, 114, 190, 228, 285, 380, 570, 1140. Digits tally from 0 to 9: 8, 10, 6, 4, 3, 6, 3, 3, 4, 3. The minimum is 3, thus, 1140 is in this sequence.
%p A353066 q:= n-> (p-> is(min(seq(coeff(p, x, j), j=0..9))>2))(add(x^i, i=
%p A353066      map(d-> convert(d, base, 10)[], [numtheory[divisors](n)[]]))):
%p A353066 select(q, [$10..5555])[];  # _Alois P. Heinz_, Apr 21 2022
%t A353066 Select[Range[10000], Length[Tally[Flatten[IntegerDigits[Divisors[#]]]]] == 10 && Min[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] >= 3 &]
%o A353066 (Python)
%o A353066 from sympy import divisors
%o A353066 def ok(n):
%o A353066     counts = [0]*10
%o A353066     for d in divisors(n, generator=True):
%o A353066         for di in str(d): counts[int(di)] += 1
%o A353066         if min(counts) > 2: return True
%o A353066     return False
%o A353066 print([k for k in range(5455) if ok(k)]) # _Michael S. Branicky_, Apr 21 2022
%o A353066 (PARI) upto(n) = { my(v = vector(n, i, -1)); for(i = 1, n, if(v[i] == -1, c = is(i); if(c == 1, v[i] = 1; for(j = 1, n\i, v[i*j] = 1; ) , v[i] = 0 ) ) ); Vec(select(x->x==1,v,1)) }
%o A353066 is(n) = { my(v = vector(10, i, 3), d = divisors(n), todo = 30, i, j); for(i = 1, #d, dd = digits(d[i]); for(j = 1, #dd, if(v[dd[j]+1] > 0, v[dd[j]+1]--; todo--; if(todo <= 0, return(1) ) ) ) ); 0 } \\ _David A. Corneth_, Jul 11 2022
%Y A353066 Cf. A059436 (at least n times).
%Y A353066 Subsequence of A095050 (at least once) and of A345390 (at least twice).
%K A353066 nonn,base
%O A353066 1,1
%A A353066 _Tanya Khovanova_, Apr 21 2022