cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353070 Solution to Forest of Numbers (Bosque de Números) puzzle for Transparent Queens starting with numbers 1 and 2 for an n X n square grid (see Comments).

This page as a plain text file.
%I A353070 #21 Apr 29 2022 15:53:33
%S A353070 3,5,8,10,13,15,17,19
%N A353070 Solution to Forest of Numbers (Bosque de Números) puzzle for Transparent Queens starting with numbers 1 and 2 for an n X n square grid (see Comments).
%C A353070 Start with an n X n square grid. Each cell has neighbors horizontally, vertically and diagonally. Place the numbers 1 and 2 anywhere. Now place the numbers 3, 4, ..., m in order, subject to the rule that when you place k, the sum of the numbers in the same row, column and diagonal must equal k. Then a(n) is the maximum m that can be achieved.
%H A353070 Rodolfo Kurchan, <a href="https://www.puzzlefun.online/problems">Puzzle Fun, Problems, Forest of Numbers</a>
%e A353070 Solutions for 5 <= n <= 8 from _Pontus von Brömssen_:
%e A353070   +---+---+---+---+---+
%e A353070   | 1 |   | 2 | 8 |   |
%e A353070   +---+---+---+---+---+
%e A353070   | 9 | 3 | 5 |   |   |
%e A353070   +---+---+---+---+---+
%e A353070   |   |   |   |   | 6 |
%e A353070   +---+---+---+---+---+
%e A353070   |   |10 |   |   |   |
%e A353070   +---+---+---+---+---+
%e A353070   |   | 7 |   |   | 4 |
%e A353070   +---+---+---+---+---+
%e A353070 .
%e A353070   +---+---+---+---+---+---+
%e A353070   | 1 | 9 |   | 8 |   |   |
%e A353070   +---+---+---+---+---+---+
%e A353070   |   |   |   | 7 |   |12 |
%e A353070   +---+---+---+---+---+---+
%e A353070   |10 |   |   |   |   |   |
%e A353070   +---+---+---+---+---+---+
%e A353070   |   |   | 6 |   |   | 2 |
%e A353070   +---+---+---+---+---+---+
%e A353070   | 5 |   |   |   |11 |   |
%e A353070   +---+---+---+---+---+---+
%e A353070   | 4 |   |13 |   |   | 3 |
%e A353070   +---+---+---+---+---+---+
%e A353070 .
%e A353070   +---+---+---+---+---+---+---+
%e A353070   |   | 8 |   | 6 |   |   |   |
%e A353070   +---+---+---+---+---+---+---+
%e A353070   |   |11 | 2 |   |   |   |   |
%e A353070   +---+---+---+---+---+---+---+
%e A353070   |   |   |   |   | 5 |   |15 |
%e A353070   +---+---+---+---+---+---+---+
%e A353070   | 3 |   |   | 1 |   |   |10 |
%e A353070   +---+---+---+---+---+---+---+
%e A353070   |14 |   |   |   |   |   |   |
%e A353070   +---+---+---+---+---+---+---+
%e A353070   | 7 |   |12 |   |   |   |   |
%e A353070   +---+---+---+---+---+---+---+
%e A353070   | 4 |   |   |   | 9 |13 |   |
%e A353070   +---+---+---+---+---+---+---+
%e A353070 .
%e A353070   +---+---+---+---+---+---+---+---+
%e A353070   | 1 | 3 |   |12 | 6 |   | 2 |   |
%e A353070   +---+---+---+---+---+---+---+---+
%e A353070   | 4 |   |   |   |   |   |11 |   |
%e A353070   +---+---+---+---+---+---+---+---+
%e A353070   |   |   | 7 |   |15 |   |   |   |
%e A353070   +---+---+---+---+---+---+---+---+
%e A353070   |   |   |   |   |   |   |   |14 |
%e A353070   +---+---+---+---+---+---+---+---+
%e A353070   |   |13 |   |   |   |   |   |   |
%e A353070   +---+---+---+---+---+---+---+---+
%e A353070   |10 |   |   |   |   |   | 5 |   |
%e A353070   +---+---+---+---+---+---+---+---+
%e A353070   |   |   |16 |   |   | 9 |   |   |
%e A353070   +---+---+---+---+---+---+---+---+
%e A353070   |   |   |   |   |   |17 |   | 8 |
%e A353070   +---+---+---+---+---+---+---+---+
%e A353070 Solution for a(9) = 19 from Giorgio Vecchi
%Y A353070 Cf. A352814, A350627.
%K A353070 nonn,more
%O A353070 2,1
%A A353070 _Rodolfo Kurchan_, Apr 21 2022