cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353071 Maximum number of clicks needed to solve any solvable Lights Out problem on an n X n grid.

This page as a plain text file.
%I A353071 #16 May 13 2022 18:13:34
%S A353071 1,4,9,7,15,36,49,64,37,100,65,144,169,123,225,124,199,324,197,400,
%T A353071 441,484
%N A353071 Maximum number of clicks needed to solve any solvable Lights Out problem on an n X n grid.
%C A353071 a(n) = n^2 if and only if A159257(n) = 0.
%C A353071 a(n) >= A075464(n).
%C A353071 If n = 6k-1 for some integer k, then a(n) <= 26k^2 - 12k + 1. This upper bound is equal to a(n) when A159257(n) = 2. Further, it is conjectured that if A159257(n) = 2, then n = 6k-1 for some integer k.
%C A353071 It is conjectured that if A159257(n) = 4, then n = 5k-1 for some integer k, and a(n) = 17k^2 - 10k.
%C A353071 It is conjectured that if A159257(n) = 6, then n = 12k-1 for some integer k, and a(n) = 88k^2 - 24k + 1
%C A353071 It is conjectured that if A159257(n) = 8, then either n = 10k-1 or n = 17k-1 for some integer k. If n = 10k-1, then a(n) = 60k^2 - 20k - 3. If n = 17k-1, then a(n) = 161k^2 - 34k - 3.
%C A353071 It is conjectured that if A159257(n) = 10, then n = 30k-1 for some integer k, and a(n) = 506k^2 - 60k - 3.
%C A353071 239 <= a(23) <= 305.
%H A353071 William Boyles, <a href="https://arxiv.org/abs/2201.03452">Most Clicks Problem in Lights Out</a>, arXiv:2201.03452 [math.CO], 2022.
%Y A353071 Cf. A159257, A075464.
%K A353071 nonn,more,hard
%O A353071 1,2
%A A353071 _William Boyles_, Apr 21 2022