This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353073 #30 Jan 10 2023 20:17:10 %S A353073 4,6,12,18,30,42,60,72,93,102,108,138,140,148,150,180,182,190,192,198, %T A353073 228,240,242,250,270,282,284,292,312,338,346,348,363,393,405,410,418, %U A353073 420,422,430,432,453,462,483,495,522,532,548,556,570,578,586,600,618 %N A353073 Numbers that differ from their prime neighbors by a square. %C A353073 Numbers sandwiched between twin primes form a subsequence. %C A353073 The first prime in this sequence is 9551. - _Alois P. Heinz_, Apr 22 2022 %H A353073 Alois P. Heinz, <a href="/A353073/b353073.txt">Table of n, a(n) for n = 1..10000</a> %e A353073 Prime neighbors of 93 are 89 and 97, they both differ from 93 by 4, a square. Thus, 93 is in this sequence. %e A353073 Prime neighbors of 140 are 149 and 139. They differ from 140 by 9 and 1, respectively. Both differences are squares, thus, 140 is in this sequence. %p A353073 q:= n-> andmap(issqr, [n-prevprime(n), nextprime(n)-n]): %p A353073 select(q, [$3..700])[]; # _Alois P. Heinz_, Apr 22 2022 %t A353073 Select[Range[3, 2000], IntegerQ[Sqrt[NextPrime[#] - #]] && IntegerQ[Sqrt[# - Prime[PrimePi[NextPrime[# - 1]] - 1]]] &] %o A353073 (PARI) isok(k) = (k>1) && issquare(nextprime(k+1)-k) && issquare(k-precprime(k-1)); \\ _Michel Marcus_, Apr 22 2022 %o A353073 (Python) %o A353073 from itertools import islice, count %o A353073 from sympy import integer_nthroot, nextprime, prevprime %o A353073 def A353073_gen(startvalue=3): # generator of terms >= startvalue %o A353073 q = nextprime(max(startvalue,3)-1) %o A353073 p, r = prevprime(q), nextprime(q) %o A353073 while True: %o A353073 if integer_nthroot(q-p,2)[1] and integer_nthroot(r-q,2)[1]: %o A353073 yield q %o A353073 t = q %o A353073 for i in count(1): %o A353073 t += 2*i-1 %o A353073 if t >= r: %o A353073 break %o A353073 if integer_nthroot(r-t,2)[1]: %o A353073 yield t %o A353073 p, q, r = q, r, nextprime(r) %o A353073 A353073_list = list(islice(A353073_gen(),30)) # _Chai Wah Wu_, Apr 22 2022 %Y A353073 Cf. A353072. %K A353073 nonn %O A353073 1,1 %A A353073 _Tanya Khovanova_, Apr 21 2022