This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353079 #8 Apr 27 2022 18:39:41 %S A353079 1,3,14,79,521,3876,31935,287225,2791122,29066589,322292257, %T A353079 3784650052,46857941291,609360372095,8296220760974,117914344818807, %U A353079 1745211622467633,26838798853062516,428009369349905497,7065576909286562195,120545067517808693300,2122393931891338237325,38512344746420591905771 %N A353079 Exponential transform of odd primes. %F A353079 E.g.f.: exp( Sum_{k>=1} prime(k+1) * x^k / k! ). %F A353079 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * prime(k+1) * a(n-k). %p A353079 a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)* %p A353079 ithprime(j+1)*binomial(n-1, j-1), j=1..n)) %p A353079 end: %p A353079 seq(a(n), n=0..22); # _Alois P. Heinz_, Apr 27 2022 %t A353079 nmax = 22; CoefficientList[Series[Exp[Sum[Prime[k + 1] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! %t A353079 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Prime[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}] %Y A353079 Cf. A007446, A065091, A300632. %K A353079 nonn %O A353079 0,2 %A A353079 _Ilya Gutkovskiy_, Apr 22 2022