This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353100 #28 May 29 2023 07:13:14 %S A353100 8,79,717,6458,58126,523137,4708235,42374116,381367044,3432303395, %T A353100 30890730553,278016574974,2502149174762,22519342572853, %U A353100 202674083155671,1824066748401032,16416600735609280,147749406620483511,1329744659584351589,11967701936259164290 %N A353100 a(1) = 8; for n>1, a(n) = 9 * a(n-1) + 9 - n. %H A353100 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-19,9). %F A353100 G.f.: x * (8 - 9 * x)/((1 - x)^2 * (1 - 9 * x)). %F A353100 a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3). %F A353100 a(n) = 7 * A014832(n) + n. %F A353100 a(n) = (7*9^(n+1) + 8*n - 63)/64. %F A353100 a(n) = Sum_{k=0..n-1} (9 - n + k)*9^k. %F A353100 E.g.f.: exp(x)*(63*(exp(8*x) - 1) + 8*x)/64. - _Stefano Spezia_, May 29 2023 %t A353100 LinearRecurrence[{11, -19, 9}, {8, 79, 717}, 20] (* _Amiram Eldar_, Apr 23 2022 *) %o A353100 (PARI) my(N=30, x='x+O('x^N)); Vec(x*(8-9*x)/((1-x)^2*(1-9*x))) %o A353100 (PARI) a(n) = (7*9^(n+1)+8*n-63)/64; %o A353100 (PARI) b(n, k) = sum(j=0, n-1, (k-n+j)*k^j); %o A353100 a(n) = b(n, 9); %Y A353100 Cf. A064617, A353094, A353095, A353096, A353097, A353098, A353099. %Y A353100 Cf. A014832. %K A353100 nonn,easy %O A353100 1,1 %A A353100 _Seiichi Manyama_, Apr 23 2022