This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353132 #33 Jul 18 2022 23:40:15 %S A353132 2,1,4,2,6,8,3,18,24,16,4,40,100,80,32,5,78,305,440,240,64,6,140,798, %T A353132 1750,1680,672,128,7,236,1876,5838,8400,5824,1792,256,8,378,4056, %U A353132 17136,34524,35616,18816,4608,512,9,580,8190,45480,122682,175896,137760,57600,11520,1024 %N A353132 Triangle read by rows of partial Bell polynomials B_{n,k}(x_1,...,x_{n-k+1}) evaluated at 2, 2, 12, 72, ..., (n-k)(n-k+1)!, divided by (n-k+1)!, n >= 1, 1 <= k <= n. %H A353132 Jordan Weaver, <a href="/A353132/b353132.txt">Rows 1 to 40 of triangle, flattened</a> %H A353132 E. T. Bell, <a href="https://www.jstor.org/stable/1967979">Partition polynomials</a>, Ann. Math., 29 (1927-1928), 38-46. %H A353132 E. T. Bell, <a href="https://www.jstor.org/stable/1968431">Exponential polynomials</a>, Ann. Math., 35 (1934), 258-277. %H A353132 Sara C. Billey and Jordan E. Weaver, <a href="https://arxiv.org/abs/2207.06508">Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs</a>, arXiv:2207.06508 [math.CO], 2022. %H A353132 A. Knutson, T. Lam and D. Speyer, <a href="http://dx.doi.org/10.1112/S0010437X13007240">Positroid varieties: juggling and geometry</a>, Compos. Math. 149 (2013), no. 10, 1710-1752. %H A353132 A. Postnikov, <a href="https://arxiv.org/abs/math/0609764">Total positivity, Grassmannians, and networks</a>, arXiv:math/0609764 [math.CO], 2006. %F A353132 T(n,k) = A353131(n,k)/(n-k+1)! %F A353132 Sum_{k=1..n} T(n,k) = A349458(n). %e A353132 For n = 4, k = 2, the partial Bell polynomial is B_{4,2}(x_1,x_2,x_3) = 4*x_1*x_3 + 3*x_2^2, so T(4,2) = B_{4,2}(2,2,12) - (4*2*12 + 3*2^2)/3! = 18. %e A353132 Triangle begins: %e A353132 [1] 2; %e A353132 [2] 1, 4; %e A353132 [3] 2, 6, 8; %e A353132 [4] 3, 18, 24, 16; %e A353132 [5] 4, 40, 100, 80, 32; %e A353132 [6] 5, 78, 305, 440, 240, 64; %e A353132 [7] 6, 140, 798, 1750, 1680, 672, 128; %e A353132 [8] 7, 236, 1876, 5838, 8400, 5824, 1792, 256; %e A353132 [9] 8, 378, 4056, 17136, 34524, 35616, 18816, 4608, 512; %e A353132 [10] 9, 580, 8190, 45480, 122682, 175896, 137760, 57600, 11520, 1024. %Y A353132 Cf. A000079, A353131, A349413, A268441, A178867. %K A353132 nonn,tabl %O A353132 1,1 %A A353132 _Jordan Weaver_, Apr 24 2022