A353139 Digitally balanced numbers (A031443) whose squares are also digitally balanced.
212, 781, 794, 806, 817, 838, 841, 844, 865, 2962, 3101, 3130, 3171, 3178, 3185, 3213, 3219, 3226, 3269, 3274, 3335, 3353, 3354, 3356, 3370, 3378, 3490, 3496, 3521, 3528, 3595, 3597, 3606, 3610, 3626, 3651, 3672, 3718, 3777, 11797, 11798, 11850, 11938, 12049
Offset: 1
Programs
-
Mathematica
balQ[n_] := Module[{d = IntegerDigits[n, 2], m}, EvenQ @ (m = Length @ d) && Count[d, 1] == m/2]; Select[Range[12000], balQ[#] && balQ[#^2] &] (* Amiram Eldar, Apr 26 2022 *)
-
Python
from itertools import count, islice from sympy.utilities.iterables import multiset_permutations def isbalanced(n): b = bin(n)[2:]; return b.count("0") == b.count("1") def A031443gen(): yield from (int("1"+"".join(p), 2) for n in count(1) for p in multiset_permutations("0"*n+"1"*(n-1))) def agen(): for k in A031443gen(): if isbalanced(k**2): yield k print(list(islice(agen(), 40))) # Michael S. Branicky, Apr 26 2022
Comments