This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353140 #15 Apr 28 2022 07:54:54 %S A353140 3274,13453,13492,13706,14726,15113,15498,15528,52049,52251,52330, %T A353140 52673,52778,53478,53684,53775,53972,54295,54411,54598,54601,55057, %U A353140 55449,55462,55505,55512,55689,56333,58066,58260,58446,58453,58470,58918,59266,59722,59786 %N A353140 Digitally balanced numbers (A031443) whose squares and cubes are also digitally balanced. %C A353140 Numbers x such that x, x^2 and x^3 are terms of A031443, that is, have the same number of 0's as 1's in their binary representations. %t A353140 balQ[n_] := Module[{d = IntegerDigits[n, 2], m}, EvenQ @ (m = Length @ d) && Count[d, 1] == m/2]; Select[Range[60000], balQ[#] && balQ[#^2] && balQ[#^3] &] (* _Amiram Eldar_, Apr 26 2022 *) %o A353140 (Python) %o A353140 from itertools import count, islice %o A353140 from sympy.utilities.iterables import multiset_permutations %o A353140 def isbalanced(n): b = bin(n)[2:]; return b.count("0") == b.count("1") %o A353140 def A031443gen(): yield from (int("1"+"".join(p), 2) for n in count(1) for p in multiset_permutations("0"*n+"1"*(n-1))) %o A353140 def agen(): %o A353140 for k in A031443gen(): %o A353140 if isbalanced(k**2) and isbalanced(k**3): %o A353140 yield k %o A353140 print(list(islice(agen(), 40))) # _Michael S. Branicky_, Apr 26 2022 %Y A353140 Cf. A031443, A345397, A353139. %K A353140 nonn,base %O A353140 1,1 %A A353140 _Alex Ratushnyak_, Apr 26 2022