This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353149 #54 May 23 2022 21:44:32 %S A353149 1,3,5,7,9,12,13,15,20,19,21,28,25,27,37,31,33,44,37,42,52,43,45,60, %T A353149 54,51,68,56,57,83,61,63,84,67,81,92,73,75,100,90,81,113,85,87,130,91, %U A353149 93,124,104,114,132,103,105,143,126,120,148,115,117,175,121,123,180,127,150,173,133,135,180,175 %N A353149 Sum of the odd-indexed terms in the n-th row of the triangle A196020. %C A353149 a(n) is the total number of steps in all odd-indexed double-staircases of the diagram of A196020 with n levels (see the example). %C A353149 a(n) is also the total number of steps in all odd-indexed double-staircases of the diagram described in A335616 with n levels that have at least one step in the bottom level of the diagram. %C A353149 Sigma(n) <= a(n). %C A353149 The graph of the sum-of-divisors function A000203 is intermediate between the graph of this sequence and the graph of A353154 (see link). - _Omar E. Pol_, May 13 2022 %H A353149 David A. Corneth, <a href="/A353149/b353149.txt">Table of n, a(n) for n = 1..10000</a> %H A353149 OEIS Plot 2, <a href="https://oeis.org/plot2a?name1=A353149&name2=A000203&tform1=untransformed&tform2=untransformed&shift=0&radiop1=matp&drawlines=true">A353149 vs A000203</a> %F A353149 a(n) = A000203(n) + A353154(n). %F A353149 a(n) = A209246(n) - A353154(n). %e A353149 For n = 15 the 15th row of the triangle A196020 is [29, 13, 7, 0, 1]. The sum of the odd-indexed terms is 29 + 7 + 1 = 37, so a(15) = 37. %e A353149 Illustration of a(15) = 37: %e A353149 Level Diagram %e A353149 . _ %e A353149 1 _|1|_ %e A353149 2 _|1 1|_ %e A353149 3 _|1 1|_ %e A353149 4 _|1 1|_ %e A353149 5 _|1 _ 1|_ %e A353149 6 _|1 |1| 1|_ %e A353149 7 _|1 | | 1|_ %e A353149 8 _|1 _| |_ 1|_ %e A353149 9 _|1 |1 1| 1|_ %e A353149 10 _|1 | | 1|_ %e A353149 11 _|1 _| |_ 1|_ %e A353149 12 _|1 |1 1| 1|_ %e A353149 13 _|1 | | 1|_ %e A353149 14 _|1 _| _ |_ 1|_ %e A353149 15 |1 |1 |1| 1| 1| %e A353149 . %e A353149 The diagram has 37 steps, so a(15) = 37. %o A353149 (PARI) a(n) = { my(r = A196020row(n)); sum(i = 0, (#r-1)\2, r[2*i + 1]) } %o A353149 A196020row(n) = { my(res, qc); qc = (sqrtint(8*n + 1) - 1)\2; res = vector(qc); for(i = 1, qc, cn = n - binomial(i + 1, 2); if(cn % i == 0, res[i] = 2*(cn/i) + 1 ) ); res } \\ _David A. Corneth_, Apr 28 2022 %Y A353149 Cf. A000203, A057640, A196020, A209246, A211343, A235791, A236104, A237591, A237593, A285901, A335616, A347186, A353154. %K A353149 nonn %O A353149 1,2 %A A353149 _Omar E. Pol_, Apr 26 2022